• Title/Summary/Keyword: tornado

Search Result 84, Processing Time 0.021 seconds

Numerical investigation of flow structures and aerodynamic pressures around a high-speed train under tornado-like winds

  • Simin Zou;Xuhui He;Teng Wu
    • Wind and Structures
    • /
    • v.38 no.4
    • /
    • pp.295-307
    • /
    • 2024
  • The funnel-shaped vortex structure of tornadoes results in a spatiotemporally varying wind velocity (speed and direction) field. However, very limited full-scale tornado data along the height and radius positions are available to identify and reliably establish a description of complex vortex structure together with the resulting aerodynamic effects on the high-speed train (HST). In this study, the improved delayed detached eddy simulation (IDDES) for flow structures and aerodynamic pressures around an HST under tornado-like winds are conducted to provide high-fidelity computational fluid dynamics (CFD) results. To demonstrate the accuracy of the numerical method adopted in this study, both field observations and wind-tunnel data are utilized to respectively validate the simulated tornado flow fields and HST aerodynamics. Then, the flow structures and aerodynamic pressures (as well as aerodynamic forces and moments) around the HST at various locations within the tornado-like vortex are comprehensively compared to highlight the importance of considering the complex spatiotemporal wind features in the HST-tornado interactions.

In-Situ Observation of Tornado: TOTO vs. DOROTHY (토네이도 현장관측: TOTO 대(對) DOROTHY)

  • Park, Seon K.
    • Atmosphere
    • /
    • v.14 no.2
    • /
    • pp.7-10
    • /
    • 2004
  • A short review on TOTO (TOtable Tornado Observatory), one of the earliest in-situ observing systems for tornado, is provided. TOTO was outfitted with sensors for measuring wind, pressure and humidity, and storm researchers, in mid-1980's, tried to put it inside tornadoes for detailed studies on tornado, but failed. However, the accumulated knowledge and experience with TOTO lead to a successful field program in mid-1990's. A story about DOROTHY, a parody of TO TO in the movie "Twister!", is also provided.

Behaviour of transmission line conductors under tornado wind

  • Hamada, Ahmed;El Damatty, Ashraf A.
    • Wind and Structures
    • /
    • v.22 no.3
    • /
    • pp.369-391
    • /
    • 2016
  • Electricity is transmitted by transmission lines from the source of production to the distribution system and then to the end users. Failure of a transmission line can lead to devastating economic losses and to negative social consequences resulting from the interruption of electricity. A comprehensive in-house numerical model that combines the data of computational fluid dynamic simulations of tornado wind fields with three dimensional nonlinear structural analysis modelling of the transmission lines (conductors and ground-wire) is used in the current study. Many codes of practice recommend neglecting the tornado forces acting on the conductors and ground-wires because of the complexity in predicting the conductors' response to such loads. As such, real transmission line systems are numerically simulated and then analyzed with and without the inclusion of the lines to assess the effect of tornado loads acting on conductors on the overall response of transmission towers. In addition, the behaviour of the conductors under the most critical tornado configuration is described. The sensitivity of the lines' behaviour to the magnitude of tornado loading, the level of initial sag, the insulator's length, and lines self-weight is investigated. Based on the current study results, a recommendation is made to consider conductors and ground-wires in the analysis and design of transmission towers under the effect of tornado wind loads.

A comparison of the forces on dome and prism for straight and tornadic wind using CFD model

  • Yousef, Majdi A.A.;Selvam, Panneer R.;Prakash, Jai
    • Wind and Structures
    • /
    • v.26 no.6
    • /
    • pp.369-382
    • /
    • 2018
  • Tornadoes are vertical swirling air formed because of the existence of layers of air with contrasting features of temperature, wind flow, moisture, and density. Tornadoes induce completely different wind forces than a straight-line (SL) wind. A suitably designed building for an SL wind may fail when exposed to a tornado-wind of the same wind speed. It is necessary to design buildings that are more resistant to tornadoes. In tornado-damaged areas, dome buildings seem to have less damage. As a dome structure is naturally wind resistant, domes have been used in back yards, as single family homes, as in-law quarters, man caves, game rooms, storm shelters, etc. However, little attention has been paid to the tornadic wind interactions with dome buildings. In this work, the tornado forces on a dome are computed using Computational Fluid Dynamics (CFD) for tornadic and SL wind. Then, the interaction of a tornado with a dome and a prism building are compared and analyzed. This work describes the results of the tornado wind effect on dome and prism buildings. The conclusions drawn from this study are illustrated in visualizations. The tornado force coefficients on a dome building are larger than SL wind forces, about 120% more in x- and y-directions and 280% more in z-direction. The tornado maximum pressure coefficients are also higher than SL wind by 150%. The tornado force coefficients on the prism are larger than the forces on the dome, about 100% more in x- and y-directions, and about 180% more in z-direction. The tornado maximum pressure coefficients on prism also are greater those on dome by 150% more. Hence, a dome building has less tornadic load than a prism because of its aerodynamic shape.

The effect of different tornado wind fields on the response of transmission line structures

  • Ezami, Nima;El Damatty, Ashraf;Hamada, Ahmed;Hamada, Mohamed
    • Wind and Structures
    • /
    • v.34 no.2
    • /
    • pp.215-230
    • /
    • 2022
  • Majority of transmission line system failures at many locations worldwide have been caused by severe localized wind events in the form of tornadoes and downbursts. This study evaluates the structural response of two different transmission line systems under equivalent F2 tornadoes obtained from real incidents. Two multi-span self-supported transmission line systems are considered in the study. Nonlinear three-dimensional finite element models are developed for both systems. The finite element models simulate six spans and five towers. Computational Fluid Dynamics (CFD) simulations are used to develop the tornado wind fields. Using a proper scaling method for geometry and velocity, full-scale tornado flow fields for the Stockton, KS, 2005 and Goshen County WY, 2009 are developed and considered together with a previously developed tornado wind field. The tornado wind profiles are obtained in terms of tangential, radial, and axial velocities. The simulated tornadoes are then normalized to the maximum velocity value for F2 tornadoes in order to compare the effect of different tornadoes having an equal magnitude. The tornado wind fields are incorporated into a three-dimensional finite element model. By varying the location of the tornado relative to the transmission line systems, base shears of the tower of interest and peak internal forces in the tower members are evaluated. Sensitivity analysis is conducted to assess the variation of the structural behaviour of the studied transmission lines associated with the location of the tornado relative to the tower of interest. The tornado-induced forces in both lines due to the three different normalized tornadoes are compared with corresponding values evaluated using the simplified load case method recently incorporated in the ASCE-74 (2020) guidelines, which was previously developed based on the research conducted at Western University.

Effect of building proximity on external and internal pressures under tornado-like flow

  • Sabareesh, G.R.;Cao, Shuyang;Wang, Jin;Matsui, Masahiro;Tamura, Yukio
    • Wind and Structures
    • /
    • v.26 no.3
    • /
    • pp.163-177
    • /
    • 2018
  • Tornadoes are one of the world's deadliest natural phenomena. They are characterized by short life span and danger. It has been observed through post-damage surveys that localities with large numbers of buildings suffer major damage during a tornado attack resulting in huge loss of life and property. Thus,it is important to study interfering buildings exposed to tornado-like vortices. The present study focuses on external and internal pressures developed on building models exposed to translating tornado-like vortices in the presence of an interfering building model. The effects of translating speed and swirl ratio of a tornado-like vortex on external and internal pressures for a principal building in the vicinity of an interfering building are investigated. Results indicate that external and internal pressures are enhanced or reduced depending on the location of the interfering building with respect to the principal building.

Comparison of aerodynamic loading of a high-rise building subjected to boundary layer and tornadic winds

  • Ashrafi, Arash;Chowdhury, Jubayer;Hangan, Horia
    • Wind and Structures
    • /
    • v.34 no.5
    • /
    • pp.395-405
    • /
    • 2022
  • Tornado-induced damages to high-rise buildings and low-rise buildings are quite different in nature. Tornado losses to high-rise buildings are generally associated with building envelope failures while tornado-induced damages to low-rise buildings are usually associated with structural or large component failures such as complete collapses, or roofs being torn off. While studies of tornado-induced structural damages tend to focus mainly on low-rise residential buildings, transmission towers, or nuclear power plants, the current rapid expansion of city centers and development of large-scale building complexes increases the risk of tornadoes impacting tall buildings. It is, therefore, important to determine how tornado-induced load affects tall buildings compared with those based on synoptic boundary layer winds. The present study applies an experimentally simulated tornado wind field to the Commonwealth Advisory Aeronautical Research Council (CAARC) building and estimates and compares its pressure coefficient effects against the Atmospheric Boundary Layer (ABL) flow field. Simulations are performed at the Wind Engineering, Energy and Environment (WindEEE) Dome which is capable of generating both ABL and tornadic winds. A model of the CAARC building at a scale of 1:200 for both ABL and tornado flows was built and equipped with pressure taps. Mean and peak surface pressures for TLV flow are reported and compared with the ABL induced wind for different time-averaging. By following a compatible definition of the pressure coefficients for TLV and ABL fields, the resulting TLV pressure field presents a similar trend to the ABL case. Also, the results show that, for the high-rise building model, the mean and 3-sec peak pressures are larger for the ABL case compared to the TLV case. These results provide a way forward for the code implementation of tornado-induced pressures on high-rise buildings.

Aeroelastic testing of a self-supported transmission tower under laboratory simulated tornado-like vortices

  • Ezami, Nima;El Damatty, Ashraf;Hamada, Ahmed;Hangan, Horia
    • Wind and Structures
    • /
    • v.34 no.2
    • /
    • pp.199-213
    • /
    • 2022
  • The current study investigates the dynamic effects in the tornado-structure response of an aeroelastic self-supported lattice transmission tower model tested under laboratory simulated tornado-like vortices. The aeroelastic model is designed for a geometric scale of 1:65 and tested under scaled down tornadoes in the Wind Engineering, Energy and Environment (WindEEE) Research Institute. The simulated tornadoes have a similar length scale of 1:65 compared to the full-scale. An extensive experimental parametric study is conducted by offsetting the stationary tornado center with respect to the aeroelastic model. Such aeroelastic testing of a transmission tower under laboratory tornadoes is not reported in the literature. A multiaxial load cell is mounted underneath the base plate to measure the base shear forces and overturning moments applied to the model in three perpendicular directions. A three-axis accelerometer is mounted at the level of the second cross-arm to measure response accelerations to evaluate the natural frequencies through a free-vibration test. Radial, tangential, and axial velocity components of the tornado wind field are measured using cobra probes. Sensitivity analyses are conducted to assess the variation of the structural dynamic response associated with the location of the tornado relative to the lattice transmission tower. Three different layouts representing the change in the orientation of the tower model relative to the components of the tornado-induced loads are considered. The structural responses of the aeroelastic model in terms of base shear forces, overturning moments, and lateral accelerations are measured. The results are utilized to understand the dynamic response of self-supported transmission towers to the tornado-induced loads.

Surface pressure measurements in translating tornado-like vortices

  • Kassab, Aya;Jubayer, Chowdhury;Ashrafi, Arash;Hangan, Horia
    • Wind and Structures
    • /
    • v.33 no.6
    • /
    • pp.447-462
    • /
    • 2021
  • High spatial and temporal surface pressure measurements were carried out in the state-of-the-art tornado simulator, the Wind Engineering, Energy and Environment (WindEEE) Dome, to explore the characteristics of stationary and translating tornado-like vortices (TLV) for a wide range of swirl ratios (S=0.21 to 1.03). The translational speed of the TLV and the surface roughness were varied to examine their effects on tornado ground pressures, wandering, and vortex structure. It was found that wandering is more pronounced at low swirl ratios and has a substantial effect on the peak pressure magnitude for stationary TLV (error percentage ≤ 35%). A new method for removing wandering was proposed which is applicable for a wide range of swirl ratios. For translating TLV, the near-surface part lagged behind the top of the vortex, resulting in a tilt of the tornado vertical axis at higher translating speeds. Also, a veering motion of the tornado base towards the left of the direction of the translation was observed. Wandering was less pronounced for higher translation speeds. Increasing the surface roughness caused an analogous effect as lowering the swirl ratio.

An Evaluation Method for Tornado Missile Strike Probability with Stochastic Correlation

  • Eguchi, Yuzuru;Murakami, Takahiro;Hirakuchi, Hiromaru;Sugimoto, Soichiro;Hattori, Yasuo
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.395-403
    • /
    • 2017
  • An efficient evaluation method for the probability of a tornado missile strike without using the Monte Carlo method is proposed in this paper. A major part of the proposed probability evaluation is based on numerical results computed using an in-house code, Tornado-borne missile analysis code, which enables us to evaluate the liftoff and flight behaviors of unconstrained objects on the ground driven by a tornado. Using the Tornado-borne missile analysis code, we can obtain a stochastic correlation between local wind speed and flight distance of each object, and this stochastic correlation is used to evaluate the conditional strike probability, $Q_V(r)$, of a missile located at position r, where the local wind speed is V. In contrast, the annual exceedance probability of local wind speed, which can be computed using a tornado hazard analysis code, is used to derive the probability density function, p(V). Then, we finally obtain the annual probability of tornado missile strike on a structure with the convolutional integration of product of $Q_V(r)$ and p(V) over V. The evaluation method is applied to a simple problem to qualitatively confirm the validity, and to quantitatively verify the results for two extreme cases in which an object is located just in the vicinity of or far away from the structure.