• Title/Summary/Keyword: topology method

Search Result 1,192, Processing Time 0.033 seconds

Analysis of Printed Circuit Boards Based on Electromagnetic Topology (Electromagnetic Topology(EMT) 기법을 이용한 Printed Circuit Boards(PCBs) 기판 해석)

  • Hwang Se-Hoon;Lee Jung-Yub;Jung Hyun-Hyo;Park Yoon-Mi
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.170-174
    • /
    • 2006
  • In this paper electromagnetic topology (EMT) is used to analyze the lumped components on printed circuit boards (PCBs). It is difficult to obtain desirable results about the electromagnetic coupling problems by using a numerical or an experimental method on complex systems. The EMT can be considered as a helpful method to the analysis of electromagnetic interference / electromagnetic compatibility (EMI/EMC) problems in the complex system. To verify the validity of this method, three types of the PCBs mounting a simple circuit are fabricated and experimented.

  • PDF

Effective Element Removal Methods for Topology Optimization (위상 최적화를 위한 효율적인 요소 제거법)

  • 한석영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.46-51
    • /
    • 2000
  • In case of ESO(evolutionary structural optimization) which is one of topology optimization methods, the element removal ratio is fixed throughout topology optimization by 1 or 2 %. As a result it has no flexibility for various types of structures and thus the rate of convergence might not be efficient. Thus various element removal methods are developed in order to improve the efficiency of ESO. In this paper, various element removal methods for ESO are compared with each other. Each element removal method is explained, and applied to a bracket and a Michell type of beam. In addition, a new bi-directional element removal method is suggested in order to obtain much better optimized topology. From the results of stress, displacement and the rate of convergence for the examples under the same mass constraints, it is verified that the suggested element removal method is the most effective. .

  • PDF

Optimal Design of a Disk-Brake Considering the Eigen-Frequency (고유진동수를 고려한 디스크 브레이크의 최적설계)

  • 유정훈;한상훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.655-659
    • /
    • 2003
  • In this study, an improved topology design methodology that is combined with genetic algorithm, response surface method is provided to overcome the limitations of the ordinary topology optimization methods on the complex non-linear problem. the method is applied to a disc brake system for reducing an automobile brake noise. The low frequency that may induces the brake noise under the unstable mode is increased by obtaining the optimal topology. The result is verified by the analysis of variance and confirmed that the estimators for the approximation equations are highly reliable

  • PDF

Topology Optimization of an Electromagnetic Coupler Considering Force Direction (힘의 방향성을 고려한 전자기 커플러의 위상 최적화)

  • Yang, Seung-Jin;Yoo, Jeong-Hoon
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.4
    • /
    • pp.230-235
    • /
    • 2006
  • The machine locking system is an important device for the safety of persons using the machine. In this study, a locking system using electromagnetic fields is proposed to decrease the defects and the cost for repairing and maintenance of the existing locking system using structural mechanism. We analyze the electromagnetic locking system and calculate the generated force considering direction by the finite element method. Also, we set up two design domains for the topology optimization; first domain is optimized to reduce the volume and the other is optimized to maximize the generated force keeping the volume, especially. The optimal design is obtained by integration of the two optimized results. An improved design is obtained by the optimal topology and it is confirmed by comparison with the initial locking system.

  • PDF

Topology Design Optimization of Electromagnetic Vibration Energy Harvester to Maximize Output Power

  • Lee, Jaewook;Yoon, Sang Won
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.283-288
    • /
    • 2013
  • This paper presents structural topology optimization that is being applied for the design of electromagnetic vibration energy harvester. The design goal is to maximize the root-mean-square value of output voltage generated by external vibration leading structures. To calculate the output voltage, the magnetic field analysis is performed by using the finite element method, and the obtained magnetic flux linkage is interpolated by using Lagrange polynomials. To achieve the design goal, permanent magnet is designed by using topology optimization. The analytical design sensitivity is derived from the adjoint variable method, and the formulated optimization problem is solved through the method of moving asymptotes (MMA). As optimization results, the optimal location and shape of the permanent magnet are provided when the magnetization direction is fixed. In addition, the optimization results including the design of magnetization direction are provided.

A smooth boundary scheme-based topology optimization for functionally graded structures with discontinuities

  • Thanh T. Banh;Luu G. Nam;Dongkyu Lee
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.73-88
    • /
    • 2023
  • This paper presents a novel implicit level set method for topology optimization of functionally graded (FG) structures with pre-existing discontinuities (pre-cracks) using radial basis functions (RBF). The mathematical formulation of the optimization problem is developed by incorporating RBF-based nodal densities as design variables and minimizing compliance as the objective function. To accurately capture crack-tip behavior, crack-tip enrichment functions are introduced, and an eXtended Finite Element Method (X-FEM) is employed for analyzing the mechanical response of FG structures with strong discontinuities. The enforcement of boundary conditions is achieved using the Hamilton-Jacobi method. The study provides detailed mathematical expressions for topology optimization of systems with defects using FG materials. Numerical examples are presented to demonstrate the efficiency and reliability of the proposed methodology.

A Hybrid Modular Multilevel Converter Topology with an Improved Nearest Level Modulation Method

  • Wang, Jun;Han, Xu;Ma, Hao;Bai, Zhihong
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.96-105
    • /
    • 2017
  • In this paper, a hybrid modular multilevel converter (MMC) topology with an improved nearest level modulation method is proposed for medium-voltage high-power applications. The arm of the proposed topology contains N series connected half-bridge submodules (HBSMs), one full-bridge submodule (FBSM) and an inductor. By exploiting the FBSM, half-level voltages are obtained in the arm voltages. Therefore, an output voltage with a 2N+1 level number can be generated. Moreover, the total level number of the inserted submodules (SMs) is a constant. Thus, there is no pulse voltage across the arm inductors, and the SM capacitor voltage is rated. With the proposed voltage balancing method, the capacitor voltage of the HBSM is twice the voltage of the FBSM, and each IGBT of the FBSM has a relatively low switching frequency and an equalized conduction loss. The capacitor voltage balancing methods of the two kinds of SMs are implemented independently. As a result, the switching frequency of the HBSM is not increased compared to the conventional MMC. In addition, according to a theoretical calculation of the total harmonic distortion of the electromotive force (EMF), the voltage quality with the presented method can be significantly enhanced when the SM number is relatively small. Simulation and experimental results obtained with a MMC-based inverter verify the validity of the developed method.

Initial Shape Design of Space Truss Structure using Density Method (밀도법을 이용한 스페이스 트러스 구조물의 초기 형상 설계)

  • Kim, Ho-Soo;Park, Young-Sin;Yang, Myung-Kyu;Lee, Min-Ho;Kim, Jae-Yoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.4
    • /
    • pp.59-66
    • /
    • 2010
  • This study presents the topology optimization technique by density method to determine the initial shape of space truss structures. Most initial shape design is performed by designer's previous experiences and trial and error method instead of the application of reasonable optimization method. Thus, the reasonable and economical optimization methods are needed to be introduced for the initial shape design. Therefore, we set design domain for cantilever space truss structure as an example model. And topology optimization is used to obtain optimum layout for them, and then size optimization method is used to find the optimum member size. Therefore, the reasonable initial optimal shapes of spatial truss structures can be obtained through the topology and size optimization using density method.

  • PDF

Topology Optimization of a Lightweight Multi-material Cowl Cross Member Using Matrix Input with the Craig Bampton Nodal Method

  • Son, Dong il;So, Sangwoo;Choi, Dong hyuk;Kim, Daeil
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.243-248
    • /
    • 2019
  • As demand of light weight in the automotive industry has increased, the cowl cross member has been investigated using various methods to change the material. Conventionally, a cowl cross member has been made of steel and aluminum, but recently researchers tested multi-material such as aluminum and plastic. We studied a new model of the cowl cross member made of composite and non ferrous materials. For products with a high degree of freedom in design, generally, the method of topology optimization is advantageous and for the partial bracket part of the cowl cross member had a degree of freedom in the design, a topology optimization is appropriate. Considering the characteristics of the cowl cross members, we need research to minimize the weight while having the performance of noise, vibration and harshness(NVH). Taking the mounting status of the product into consideration, we used an assembly model to optimize the cowl cross member. But this method took too much time so we considered simple cowl cross member assemble conditions using the direct matrix input method(DMI) with the Craig-Bampton Nodal Method. This method is capable of considering the status of the assembly without assembling the model, which reduced the solving time and increased the accuracy comparison with a cowl cross member without DMI.

Optimal Design to minimize Eddy Current Loss of Structure Part in Electrical Machines using Topology Optimization (위상최적화를 이용한 전기기기 구조부의 와전류손을 줄이는 최적설계)

  • Lee, Heon;Shim, Ho-Kyung;Wang, Se-Myung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.655-656
    • /
    • 2008
  • This research presents a topology optimization to minimize eddy current loss maintaining mechanical robustness of structure part in electrical machines A design sensitivity equation for the topology optimization is derived by employing the discrete system equations combined with the adjoint variable method. As a numerical example, frame design of a C-core actuator is performed by the proposed method.

  • PDF