• Title/Summary/Keyword: tool geometry

Search Result 540, Processing Time 0.027 seconds

Application of CAE for Precision Material Forming of Electric Parts (정밀 전기, 전자 부품 성형을 위한 해석 틀의 활용)

  • 김석관;이재진;서장원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.185-189
    • /
    • 1994
  • The key factor of quality in precision metal forming is to meet the requirements of parts size and shape. Particular problem of unflatness occurs frequently. This study focuses on figuring out the cause of unflatness. To predict the amount of unflatness after ejection from tool, equivalent temperature method is used. This method, temperature equivalent to the final stress value is calculated, and it is applied as the boundary condition of the linear static analysis. The final of formed part is used as the geometry model of the static analysis.

New Trends of Non-Traditional Machining Technology (특수가공기술의 최신동향)

  • 김정두
    • Journal of the Korean Professional Engineers Association
    • /
    • v.34 no.2
    • /
    • pp.10-13
    • /
    • 2001
  • Workpiece materials may be relatively easy to machine by traditional methods but workpiece geometry also may be a constraint. Many shapes that are geometrically difficult to handle conventionally may be candidates for nontraditional processes. Nontraditional processes provide new opportunities for product design innovation and productivity improvements. Difficult-to-machine materials of geometric shapes difficult o produce with traditional equipment and tooling, may often be easily and cost effectively machined using nontraditional processes. Notraditional machining processes are relative newcomers o the manufacturing arena. Nontraditional chemical solutions, or even electrolytic current as the working medium rather than a conventional cutting tool or abrasive to remove or shape materials.

  • PDF

Calculation of Translational Swept Volumes (평행 이동에 의한 스웹트 볼륨의 계산 방법)

  • 백낙훈;신성용
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.28-34
    • /
    • 1997
  • A swept volume is a useful tool for solving various types of interference problems. Previous works have concentrated on sweeping an object along an arbitrary path, that results in complex algorithms. This paper concerns the volume swept by translating an object along a linear path. After analyzing the structure of the swept volume, we present an incremental algorithm for constructing a swept volume. Our algorithm takes O(n/sup 2/ *.alpha.(n)+T/sub c/) time where n is the number of vertices in the original object and T/sub c/ is time for handling face cycles.

  • PDF

A study on the sensitivity analysis of welding process parameters on weld bead geometry (용접 비드 형상에 대한 용접공정 변수의 민감도 해석에 관한 연구)

  • 이세환
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.274-280
    • /
    • 1998
  • The welding technology and qualities are developed significantly, in recent years, in the use of automated processing technology and welding robot systems. But these automated welding technologies have many difficulties for finding the optimal welding parameter conditions. Because of the lack of mathematical model for determination of optimal welding process parameters. In this study, the sensitivity analysis of the empirical equations for finding weld bead width, height and penetration depth by using the published formulae. The selected major welding process parameters effected to weld bead geometries are the welding speed, current, voltage and weld wire diameter.

  • PDF

CHALLENGES AND PROSPECTS FOR WHOLE-CORE MONTE CARLO ANALYSIS

  • Martin, William R.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.2
    • /
    • pp.151-160
    • /
    • 2012
  • The advantages for using Monte Carlo methods to analyze full-core reactor configurations include essentially exact representation of geometry and physical phenomena that are important for reactor analysis. But this substantial advantage comes at a substantial cost because of the computational burden, both in terms of memory demand and computational time. This paper focuses on the challenges facing full-core Monte Carlo for keff calculations and the prospects for Monte Carlo becoming a routine tool for reactor analysis.

Development of a Quality Analysis Program for Laser Fusion Cutting (레이저 용융 절단 해석 프로그램 개발)

  • 이성환;민헌식
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.3
    • /
    • pp.72-79
    • /
    • 2002
  • Though the laser cutting process is increasingly used in industry, a process automation and systematic database is still yet to be developed. In this study, as the fundamental step toward the construction of a reliable process expert system, a laser cutting quality monitoring/analysis system is developed based on simulations and experimental results. The relations between laser process parameters and laser cutting surface quality parameters such as kerf geometry, striation, surface roughness and dross formation are characterized and analyzed. A graphical user interface is used to visualize the results.

A Study on Efficient Geometry Education which using the Graphic supporting Tool (그래픽을 활용한 효과적인 도형 교육에 관한 연구)

  • Choi, Ga-Hyun;Seo, Dong-Su;Yoon, Jung-Sun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2014.11a
    • /
    • pp.391-392
    • /
    • 2014
  • 지식과 정보가 다양하고 급속하게 변하는 정보화 시대를 살아가는 우리에게 필요한 것은 주어진 상황에 빠르게 대처하는 창의적인 사고이다. 이런 능력을 신장하기 위해서는 교육과정에도 창의력 신장을 위한 방법들이 모색되어야 한다. 본 연구는 초등학교 수학과 교육 과정의 한 부분인 '도형' 영역의 내용을 컴퓨터를 이용해 수업할 수 있도록 교육 지원 도구로 구현하였다.

  • PDF

NC 선반 가공의 프로그래밍을 위한 대화형 그래픽 시스템 TIG

  • 이재원;조경래
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.243-250
    • /
    • 1991
  • This paper concerns the development of NC programming system TIG (Turning with Interactive Graphics) with interactive graphics for turning operation. The system cosists of the processor, the post-processor and the system-user interface. Different from previous segment contour based NC graphic programming systems, the frliability and efficiencyof programming is realized by using Boolean operation with block unit based ICONs for the geometry definition. The tool motion can be also displayed on the screen together with the part contour. The system calculate automatically the number of passes based on the user specified cutting conditions.

On Spherical Trigonometry (구면삼각법에 관한 소고)

  • KOH Youngmee
    • Journal for History of Mathematics
    • /
    • v.36 no.2
    • /
    • pp.21-34
    • /
    • 2023
  • Spherical trigonometry refers to the geometry related to spherical triangles. It has been an important tool for studying astronomy since ancient times. In trigonometry, concepts such as trigonometric functions naturally emerge from the relationship between arcs and chords of a circle. In this paper, we briefly examine the origin of spherical trigonometry. To introduce the basics of spherical trigonometry, we present fundamental and important theorems such as Menelaus's theorem, the law of sines and the law of cosines on a sphere, along with their proofs. Furthermore, we discuss the educational value and potential applications of spherical trigonometry.

GEOMETRIC APPLICATIONS AND KINEMATICS OF UMBRELLA MATRICES

  • Mert Carboga;Yusuf Yayli
    • Korean Journal of Mathematics
    • /
    • v.31 no.3
    • /
    • pp.295-303
    • /
    • 2023
  • This paper introduces a novel method for obtaining umbrella matrices, which are defined as orthogonal matrices with row sums of one, using skew-symmetric matrices and Cayley's Formula. This method is presented for the first time in this paper. We also investigate the kinematic properties and applications of umbrella matrices, demonstrating their usefulness as a tool in geometry and kinematics. Our findings provide new insights into the connections between matrix theory and geometric applications.