• Title/Summary/Keyword: toluene removal

Search Result 213, Processing Time 0.03 seconds

The Biological Degradation of High Concentration of Trichloroethylene (TCE) by Delftia acidovornas EK2 (Delftia acidovorans EK2에 의한 고농도 Trichloroethylene (TCE)의 생물학적 분해 특성)

  • Park, Woo-Jung;Lee, Sang-Seob
    • Korean Journal of Microbiology
    • /
    • v.46 no.2
    • /
    • pp.183-191
    • /
    • 2010
  • In this study, we isolated 179 bacterial strains using benzene, phenol, ethylbenzene, aniline, cumene, toluene as growth substrate from TCE contaminated soils and wastewaters. All the 179 strains were screened for TCE (30 mg/L) removal (growth substrate 0.2 g/L, $30^{\circ}C$, pH 7, cell biomass 1.0 g/L (w/v)) under aerobic condition for 21 days. EK2 strain using aniline showed the highest removal efficiency (74.4%) for TCE degradation. This strain was identified as Delftia acidovorans as the results of API kit, 16S rDNA sequence and fatty acid assay. In the batch culture, D. acidovorans EK2 showed the bio-degradation for TCE in the various TCE concentration (10 mg/L to 200 mg/L). However, D. acidovorans EK2 did not show the bio-degradation in the TCE 250 mg/L. D. acidovorans EK2 also show the removal efficiency (99.9%) for 12 days in the low concentration (1.0 mg/L). Optimal conditions to degrade TCE 200 mg/L were cell biomass 1.0 g/L (w/v), aniline 0.5 g/L, pH 7 and $30^{\circ}C$. Removal efficiency and removal rate by D. acidovorans EK2 strain was 71.0% and 94.7 nmol/h for 21 days under optimal conditions. Conclusion, we expect that D. acidovorans EK2 may contribute on the biological treatment in the contaminated soil or industrio us wastewater.

Performance of a Hollow Fiber Membrane Bioreactor for the Treatment of Gaseous Toluene (중공사막 결합형 생물반응기를 이용한 기체상 톨루엔 제거 특성 검토)

  • Son, Young-Gyu;Kim, Yong-Sik;Khim, Jee-Hyeong;Song, Ji-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.886-891
    • /
    • 2005
  • In this study, a novel bioreactor system using a submerged hollow fiber membrane module (so called hollow fiber membrane bioreactor, HFMB) was applied to investigate feasibility and biodegradation capacity of the system for the treatment of gaseous toluene. First an abiotic test was conducted to determine the mass transfer coefficient, showing the value was similar to that obtained from a diffuser system using fine bubbles. Second, in the presence of toluene-degrading microorganisms, the HFMB was operated at different inlet toluene loading rates of 50, 100, $500\;g/m^3/hr$, and overall removal efficiencies were maintained in the range of $70{\sim}80%$. In addition, elimination capacities(EC) were increased up to $800\;g/m^3/hr$, which was substantially higher than maximum ECs for toluene reported in the biofiltration literature. Consequently, the HFMB was considered as an alternative method over other conventional VOC-treating technologies.

바이오필터에 의한 VOC 분해에 미치는 온도와 유입농도의 영향

  • Yun, Jin-Gil;Park, Chang-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.93-94
    • /
    • 2001
  • Biofilter operating parameters such as incoming VOCs concentrations, temperature, and packing materials were studied. The performance of a lab-scale biofilter in the treatment of air contaminated with mixtures vac has been evaluated in this study. The biofilter was operated for 80 days packed with compost. Empty bed residence time (EBRT) was 3 to 1.5 min. After 80 days of operation, the removal efficiency was 94% and 73% at $25^{\circ}C$ and $45^{\circ}C$, respectively. Removal efficiencies of m-xylene (93%), o-xylene (92%) and toluene (92%) were better than that of benzene (84.7%).

  • PDF

A Study on the removal of B.T.X by UV Photooxidation-Activated Carbon (광산화-활성탄 복합공정에 의한 B.T.X. 분해에 관한 연구)

  • Jeong, Chang Hun;Bae, Hae Ryong
    • Journal of Environmental Science International
    • /
    • v.13 no.1
    • /
    • pp.41-45
    • /
    • 2004
  • In this study, The decomposition of gas-phase Benzene and Toluene, Xylene in air streams by direct UV Photolysis, UV/TiO$_2$ and UV/TiO$_2$/A.C process was studied. The experiments were carried out under various UV light intensities and initial concentrations of B.T.X to investigate and compare the removal efficiency of the pollutant. B.T.X was determined by GC-FID of gas samples taken from the a glass sampling bulb which was located at reactor inlet and outlet by gas-tight syringe. From this study, the results indicate that UV/TiO$_2$/A.C system (photooxidation-photocatalytic oxidation-adsorption process) is ideal for treatment of B.T.X from the small workplace. Although the results needs more verifications, the methodology seems to be reasonable and can be applied for various workplace (laundry, gas station et al.).

Microwave Remediation of Soils Contaminated by Volatile Organic Chemicals (마이크로파에 의한 휘발성 유기토양오염물질 제거에 관한 연구)

  • 문경환;김우현;이병철;김덕찬
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.3
    • /
    • pp.116-122
    • /
    • 1996
  • This study has been focused on the applicability of microwave treatment of soil contaminated by volitile organic chemicals. Substrates studied were sand and sandy soil. These substrates were impregnated with toluene, tetrachloroethylene, o-xylene and p-dichlorobenzene. The microwave treatment was conducted in a modified domestic microwave oven: 2450 MHz, 700 W. The sandy soil temperature added water went up rapidly to about 130$\circ$C for 4 minutes. And then, the temperature appeared to plateau out. A series of tests were performed to depict the effectiveness of microwave treatment technique to organic contaminants from soils. Removal efficiencies in sandy soil and sand were increased with increasing water content and exposure time. Microwave radiation penetrates the soil and heats water throughout the matrix. Therefore, addition of a certain amount of water to the contaminated soil can efficiently enhance the ability of the soil to absorb microwave energy and promote the evaporation of the volitile contaminants. And the vapour pressure of impregnated organic contaminants becomes lower. the removal efficiency becomes poor.

  • PDF

Degradation of Volatile Organic Compound Mixtures Using a Biofiltration System (생물여과 시스템을 이용한 다성분계 휘발성 유기화합물의 분해)

  • 윤인길;박창호
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.501-506
    • /
    • 2000
  • A bench-scale air biofilter was evaluated for the removal of volatile organic compounds (VOCs) from a gas stream. Compost and peat were used as the biological attachment media. Biofilter operating parameters such as incoming VOCs concentrations, temperature, and packing materials were examined. After 26 days of acclimation periods, at 25$^{\circ}C$ and 45$^{\circ}C$, the biofilter removed more than 90% of 30 to 72 mg/㎥ of total VOC. After 40 days of operation, the concentrations of isoprene, toluene, and m-xylene were reduced to 96∼99, 91∼93, and 91∼93% of the original concentrations. VOC removal efficiency was not affected by the temperature. The medium pH was maintained near neutral (pH 6.5∼7.1). After 37 days of operation, the total bacteria count in the biofilter media increased to 1.12${\times}$10(sup)8 cells/g of medium.

  • PDF

Characterization of BTX-degrading bacteria and identification of substrate interactions during their degradation

  • Oh, Young-Sook;Choi, Sung-Chan
    • Journal of Microbiology
    • /
    • v.35 no.3
    • /
    • pp.193-199
    • /
    • 1997
  • From several industrial wastewaters, 14 bacterial strains which degrade benzene, toluene, o-xylene, m-xylene, or p-xylene (BTX) were obtained. These strains were characterized as to their species composition and the substrate range, kinetic parameters and the substrate interactions were investigated. Although BTX components have a similar chemical structure, isolated strains showed different substrate ranges and kinetic parameters. None of the strains could degrade all of BTX components and most of them showed an inhibition (Haldane) kinetics on BTX, BTX mixtures were removed under inhibitory substrate interactions with variation in the intensity of inhibition. For a complete degradation of BTX, a defined mixed culture containing three different types of patyways was constructed and all of the BTX components were simultaneously degraded with the totla removal rate of 225.69 mg/g biomass/h Judging from the results, the obtained mixed culture seems to be useful for the treatment of BTX-contaminated wastewater or groundwater as well as for the removal of BTX from the contaminated air stream.

  • PDF

VOCs Removal in Drinking Water Treatment Process by Ozonation (오존산화에 의한 수처리공정에서 VOCs의 제거 특성)

  • Han, Myung-Ho;Choi, Joon-Ho;Lim, Hak-Sang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.2
    • /
    • pp.65-75
    • /
    • 1997
  • Removal characteristics of volatile organic carbons(VOCs) by ozone oxidation and other processes in the raw water of the 1st Nakdong water treatment plant were investigated. Dichrolomethane, toluene and other 7 compounds were detected in the raw water. With regard to detected 4 compounds in finally treated water, it was found that VOCs could not be removed effectively by traditional water treatment process. Benzene, 1,2-dichlorobenzne were not detected in the raw water but they were detected in the process of treatment. The compound of highest detection frequency was dichloromethane. When the raw water was controlled at pH 7, temperature $20^{\circ}C$, 5 minutes as contact time, 10 minutes as reaction time, the removal rate of THMFP, $KMnO_4$ demand, TOC, $UV_{254nm}$ and $NH_3-N$ were 46.4%, 22%, 19.6%, 31% and 8%, respectively. From estimating the finally treated water qualities in 7 kinds of treatment processes, P-6 process(raw water-chlorination-coagulation-ozonation) was most effective for organics removal and THMs control. Removal efficiencies for $KMnO_4$ demand and TOC by the process which combined preozonation with coagulation was twice better than only preozonation. $NH_3-N$ removal rate was shown as 10% by P-3 process(raw water-coagulation-ozonation), but 83% of $NH_3-N$ was removed by P-4 process(raw water-coagulation-chlorination). It was found that the chlorination is more effective than the ozonation for the NH3-N removal as commonly known.

  • PDF

Photocatalytic Destruction of Chlorinated and Aromatic Hydrocarbons for Low-Level Indoor Air Cleaning (저농도 실내공기 정화를 위한 염소화 및 방향족 탄화수소의 광촉매 분해)

  • Jo, Wan Geun;Gwon, Gi Dong;Choe, Sang Jun;Song, Dong Ik
    • Journal of Environmental Science International
    • /
    • v.13 no.9
    • /
    • pp.767-777
    • /
    • 2004
  • This study evaluated the technical feasibility of the application of $TiO_2$ photocatalysis for the removal of volatile hydrocarbons(VHC) at low ppb concentrations commonly associated with non-occupational indoor air quality issues. A series of experiments was conducted to evaluate five parameters (relative humidity (RH), hydraulic diameter (HD), feeding type (FT) of VHC, photocatalytic oxidation (PCO) reactor material (RM), and inlet port size (IPS) of PCO reactor) for the PCO destruction efficiencies of the selected target VHC. None of the target VHC presented significant dependence on the RH, which are inconsistent with a certain previous study that reported that under conditions of low humidity and a ppm toluene inlet level, there was a drop in the PCO efficiency with decreasing humidity. However, it is noted that the four parameters (HD, RM, FT and IPS) should be considered for better VHC removal efficiencies for the application of $TiO_2$ photocatalytic technology for cleansing non-occupational indoor air. The PCO destruction of VHC at concentrations associated with non-occupational indoor air quality issues can be up to nearly 100%. The amount of CO generated during PCO were a negligible addition to the indoor CO levels. These abilities can make the PCO reactor an important tool in the effort to improve non-occupational indoor air quality.

Non-thermal plasma를 이용한 VOCs의 제거기술

  • Song, Yeong-Hun;Sin, Wan-Ho;Kim, Gwan-Tae;Kim, Seok-Jun;Sim, Sun-Yong;Jang, Dong-Je
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.31-36
    • /
    • 1998
  • An experimental study has been performed to characterize fundamental aspects of VOCs removal using non-thermal palsma technique. The removed VOCs in the present study are toluene ($C_6H_5CH_3$), ethene ($C_2H_4$), propene ($C_3H_6$) which are typical air pollutants generated from industry and automobile engines. The non-thermal plasma used in the present experiments has been produced in a wire-cylinder reactor with pulsed corona or a packed-bed reactor filled with ceramic bead. These differently generated non-thermal plasma have been visualized with an intensified CCD. The images of non-thermal plasma have been used for optimal design of a corona reactor used in the present study. The experimental results show that the removal efficiencies of VOCs with non-thermal plasma are dependant on the reactivity of VOCs with OH, O, and $O_3$. The results also show that the removal efficiencies of VOCs decrease significantly when VOCs are treated with NO that is also oxidized in the presence of OH, O, and $O_3$.

  • PDF