DOI QR코드

DOI QR Code

Photocatalytic Destruction of Chlorinated and Aromatic Hydrocarbons for Low-Level Indoor Air Cleaning

저농도 실내공기 정화를 위한 염소화 및 방향족 탄화수소의 광촉매 분해

  • Published : 2004.09.01

Abstract

This study evaluated the technical feasibility of the application of $TiO_2$ photocatalysis for the removal of volatile hydrocarbons(VHC) at low ppb concentrations commonly associated with non-occupational indoor air quality issues. A series of experiments was conducted to evaluate five parameters (relative humidity (RH), hydraulic diameter (HD), feeding type (FT) of VHC, photocatalytic oxidation (PCO) reactor material (RM), and inlet port size (IPS) of PCO reactor) for the PCO destruction efficiencies of the selected target VHC. None of the target VHC presented significant dependence on the RH, which are inconsistent with a certain previous study that reported that under conditions of low humidity and a ppm toluene inlet level, there was a drop in the PCO efficiency with decreasing humidity. However, it is noted that the four parameters (HD, RM, FT and IPS) should be considered for better VHC removal efficiencies for the application of $TiO_2$ photocatalytic technology for cleansing non-occupational indoor air. The PCO destruction of VHC at concentrations associated with non-occupational indoor air quality issues can be up to nearly 100%. The amount of CO generated during PCO were a negligible addition to the indoor CO levels. These abilities can make the PCO reactor an important tool in the effort to improve non-occupational indoor air quality.

Keywords

References

  1. J. Assoc. Off. Anal. Chem. v.66 Applications of Tenax trapping to cigarrete smoking Higgins, C. E.;W. H. Greist;G. Olerich
  2. Environ. Res. v.50 The influence of personal activities on exposure to volatile organic compounds Wallace, L. A.; E. D. Pellizzari;T. D. Hartwell;V. Davis;L. C. Michael;R. W. Whitmore https://doi.org/10.1016/S0013-9351(89)80047-7
  3. J. Expos. Anal. Environ. Epidemiol. v.9 Vertical and horizontal variability of volatile organic compounds in homes in Eastern Germany Schneider, P.; G. Lorinci; I. L. Gebefugi; J. Heinrich;A. Kettrup;H. E. Wichmann https://doi.org/10.1038/sj.jea.7500030
  4. Atmos. Environ. v.21 The carcinogenic risk of some organic vapors indoors: a theoretical survey, Atmos Tancrede, M. R.;W. L. Zeise;E. A. C. Crouch https://doi.org/10.1016/0004-6981(87)90351-9
  5. Cancer risk from outdoor exposure to air toxics, PA-450/1-90-004a United States Environmental Protection Agency (USEPA)
  6. J. Expos. Anal. Environ. Epidemiol. v.1 The Los Angeles TEAM study: personal exposures, indoor-outdoor air concentrations, and breath concentrations of 25 volatile organic compounds Wallace, L.;W. Nelson;R. Ziegenfus;E. Pellizzari;L. Michael;R. Whitmore;H. Zelon;T. Hartwell;R. Perritt
  7. Environ. Int. v.21 Determination of volatile organic compounds and ETS apportionment in 49 homes Heavner, D. L.;W. T. T. Morgan;M. W. Ogden https://doi.org/10.1016/0160-4120(94)00018-3
  8. Atmos. Environ. v.35 Aromatic hydrocarbons in the atmospheric environment: Part I. Indoor versus outdoor sources, the influence of traffic Ilgen, E.;N. Karfich;K. Levsen;J. Angerer;P. Schneider;J. Heinrich;H. Wichmann;L. Dunemann;J. Begerow https://doi.org/10.1016/S1352-2310(00)00388-5
  9. Atmos. Environ. v.36 Volatile organic compounds in roadside microenvironments of metropolitan Hong Kong Chan, C. Y.;L. Y. Chan;X. M. Wang;Y. M. Liu;S. C. Lee;S. C. Zou;G. Y. Sheng;J. M. Fu https://doi.org/10.1016/S1352-2310(02)00097-3
  10. J. Catal. v.136 Heterogeneous photocatalytic oxdation of gas-phase organics for air purification, acetone, 1-butanol, butyraldehyde, formaldehyde and m-xylene oxidation Peral, J.;D. F. Ollis https://doi.org/10.1016/0021-9517(92)90085-V
  11. Environ. Sci. Technol. v.29 Ti${O_2}$ photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene Obee, T. N.;R. T. Brown https://doi.org/10.1021/es00005a013
  12. Center for Indoor Air Research Currents v.1;4 Photocatalytic degradation of formaldehyde and other VOCs in indoor air Anderson, M. A.;W. A. Zeltner;X. Fu;D. T. Tompkins;D. T. Reindl
  13. J. Air & Waste Manage. Assoc. v.46 Heterogeneous photocatalysis for control of volatile organic compounds in indoor air Jacoby, W. A.;D. M. Blake;J. A. Fennell;J. E. Boulter;L. M. Vargo;M. C. George;S. K. Dolberg https://doi.org/10.1080/10473289.1996.10467525
  14. Environ. Sci. Technol. v.30 Photooxidation of sub-parts-per-million toluene and formaldehyde levels on titania using a glass-plate reactor Obee, T. N. https://doi.org/10.1021/es9602713
  15. J. Air & Waste Manage. Assoc. v.48 Investigation of the photocatalytic oxidation of low-level carbonyl compounds Stevens, L.;J. A. Lanning;L. G. Anderson;W. A. Jacoby;N. Chornet https://doi.org/10.1080/10473289.1998.10463748
  16. Atmos. Environ. v.20 Toluene oxidation on UV-irradiated titanium dioxide with and without $O_2,\;NO_2,\;or\;H_2O$ at ambient temperature Ibusuki, T.;K. Takeuchi https://doi.org/10.1016/0004-6981(86)90119-8
  17. Photocatalytic Purification and treatment of Water and Air Suzuki, K.;Ollis D. F.(ed.);Al-Ekabi H.(ed.)
  18. Abstracts of Papers,The First International Conference on Advanced Oxidation technologies for Water and Air Remediation, London, Ontario, Canada Murabayashi, M.;K. Itoh;J. S. Kim;E. Katori;K. Iguchi;K. Okamura;K. Kawashima;R. Masuda
  19. Abstracts of Papers,The First International Conference on Advanced Oxidation technologies for Water and Air Remediation, London, Ontario, Canada Weedon, A. C.
  20. J. Photochem. Photobiol. A. Chem. v.88 Heterogeneous photocatalytic oxidation of dilute toluene-chlorocarbon mixtures in air Sauer, M. L.;M. A. Hale;D. F. Ollis https://doi.org/10.1016/1010-6030(95)04052-H
  21. J. Catal. v.167 Trichloroethylene-promoted photocatalytic oxidation of air contaminants d'Hennezel, O;D. F. Ollis https://doi.org/10.1006/jcat.1997.1552
  22. Atmos. Environ. v.31 Indoor air quality in homes, offices and restaurants in Korean urban areas-indoor/outdoor relationships Baek, S. O.;Y. S. Kim;R. Perry https://doi.org/10.1016/S1352-2310(96)00215-4
  23. J. Air & Waste Manage. Assoc. v.51 Exposure to methyl tertiary butyl ether and benzene in close proximity to service stations Jo, W. K.;J. W. Oh https://doi.org/10.1080/10473289.2001.10464339
  24. The Third International Symposium Chemical Oxidaton: Technology for the Nineties Berman, E.;J. Dong;Ecjenfelder, W. W.(ed.);Bowers, A. R.(ed.);Roth, J. A.(ed.)
  25. J. Catal. v.163 Heterogeneous photocatalytic oxidation of trichloroethylene and toluene mixtures in air: kinetic promotion and inhibition, time-dependent catalyst activity Luo, Y.;D. F. Ollis https://doi.org/10.1006/jcat.1996.0299
  26. J. Catal. v.69 Photocatalytic properties of Perovskites for$H_2$ and CO oxidation-influence of ferroelectric properties Damme, H.;W. K. Hall https://doi.org/10.1016/0021-9517(81)90172-X
  27. J. Phys. Chem. v.1000 CO photooxidation on $TiO_2$ Linsebigler, A.;G. Lu;J. T. Yates Jr.
  28. Cat. Today v.39 Quantitative studies on the heterogeneous gasphase photooxidation of CO and simple VOCs by air over $TiO_2$ Vorontsov, A. V.;E. N. Savinov;G. B. Barannik;V. N. Troisky;V. N. Parmon https://doi.org/10.1016/S0920-5861(97)00102-8
  29. Appl. Catal. v.B6 The gas-phase photocatalytic mineralization of benzene on porous titania-based catalysts Fu, X.;W. A. Zeltner;M. A. Anderson
  30. Catal. Today v.29 Photocatalytic destruction of toluene and xylene at gas phase on a titania based monolithic catalyst Blanco, J.;P. Avila;A. Bahamonde;E. Alvarez;B. Sanchez;M. Romero https://doi.org/10.1016/0920-5861(95)00317-7