The Biological Degradation of High Concentration of Trichloroethylene (TCE) by Delftia acidovornas EK2

Delftia acidovorans EK2에 의한 고농도 Trichloroethylene (TCE)의 생물학적 분해 특성

  • Park, Woo-Jung (Department of Biological Engineering, Kyonggi University) ;
  • Lee, Sang-Seob (Department of Biological Engineering, Kyonggi University)
  • Received : 2010.05.27
  • Accepted : 2010.06.16
  • Published : 2010.06.30

Abstract

In this study, we isolated 179 bacterial strains using benzene, phenol, ethylbenzene, aniline, cumene, toluene as growth substrate from TCE contaminated soils and wastewaters. All the 179 strains were screened for TCE (30 mg/L) removal (growth substrate 0.2 g/L, $30^{\circ}C$, pH 7, cell biomass 1.0 g/L (w/v)) under aerobic condition for 21 days. EK2 strain using aniline showed the highest removal efficiency (74.4%) for TCE degradation. This strain was identified as Delftia acidovorans as the results of API kit, 16S rDNA sequence and fatty acid assay. In the batch culture, D. acidovorans EK2 showed the bio-degradation for TCE in the various TCE concentration (10 mg/L to 200 mg/L). However, D. acidovorans EK2 did not show the bio-degradation in the TCE 250 mg/L. D. acidovorans EK2 also show the removal efficiency (99.9%) for 12 days in the low concentration (1.0 mg/L). Optimal conditions to degrade TCE 200 mg/L were cell biomass 1.0 g/L (w/v), aniline 0.5 g/L, pH 7 and $30^{\circ}C$. Removal efficiency and removal rate by D. acidovorans EK2 strain was 71.0% and 94.7 nmol/h for 21 days under optimal conditions. Conclusion, we expect that D. acidovorans EK2 may contribute on the biological treatment in the contaminated soil or industrio us wastewater.

본 연구에서는 성장기질로써 다양한 방향족 화합물을 첨가하여 TCE 분해 균주를 분리하고 고효율 TCE 분해 균주에 의한 고농도의 TCE 분해 특징에 대해 연구하였다. TCE에 오염된 토양 및 폐수로부터 시료를 채취하였고 성장기질로써 벤젠(Benzene), 페놀(Phenol), 에틸벤젠(Ethylbenzene), 아닐린(Aniline), 큐멘(Cumene), 톨루엔(Toluene) 등을 사용하여 TCE에 내성을 가지는 179 균주를 순수 분리하였다. 순수 분리된 균주들을 TCE 농도 30 mg/L, 성장기질 농도 0.2 g/L, $30^{\circ}C$, pH 7, 균 농도 1.0 g/L (w/v)의 호기적 조건으로 21일 동안 분해효율을 측정한 결과, 아닐린을 성장기질로 이용한 EK2 균주가 74.4%의 가장 높은 효율을 보여주었다. EK2 균주는 형태학적 특징, 생화학적 특징 및 분자적 특징을 분석한 결과 Delftia acidovorans로 동정되었다. D. acidovorans EK2의 TCE 분해는 TCE 농도 10에서 200 mg/L까지 성장 및 분해할 수 있었으나 250 mg/L 이상의 농도에서는 성장과 분해가 보이지 않았다. 저농도(1.0 mg/L) 분해 실험을 위하여 D. acidovorans EK2를 각 0.01 g/L, 0.03 g/L, 0.05 g/L로 적용한 결과, 모든 조건에서 12일 동안 99.9%의 분해효율을 보였다. 고농도(200 mg/L)를 분해하기 위한 최적 배양조건은 균 농도 1.0 g/L, 아닐린 농도 0.5 g/L, pH 7, 온도 $30^{\circ}C$로 확인되었으며, 21일 동안 호기적으로 배양 시 71.0%의 가장 높은 TCE 분해효율을 보여주었고, 분해속도는 94.7 nmol/h이었다. 결과적으로 본 연구에서 개발된 D. acidovorans EK2를 이용하여 고농도의 TCE로 오염된 토양 및 지하수의 생물학적 처리에 효율적으로 이용될 수 있을 것으로 사료된다.

Keywords

References

  1. Agency for Toxic Substances and Disease Registry (ATSDR). 1997. Toxicological profile for trichloroethylene, ATSDR, Division of Toxicological, Atlanta, GA, USA.
  2. Alan, R.H. and Y. Kim. 1990. Trichloroethylene degradation by two independent aromatic-degrading pathways in Alcaligenes eutrophus JMP134. Appl. Environ. Microbiol. 56, 1179-1181.
  3. Atlas, R.M. 1995. Bioremediation. Chem. Eng. News. 73, 32-42.
  4. Bilge, A.K. and C. Ferhan. 2005. Cometabolic degradation of TCE in enriched nitrifying batch systems. J. Hazard. Mater. 125, 260-265. https://doi.org/10.1016/j.jhazmat.2005.06.002
  5. Chen, Y.M., T.F. Lin, H. Chih, and J.C. Lin. 2008. Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida. Chemosphere 71, 1671-1680.
  6. Dekker, T.J. and L.M. Abriola. 2000. The influence of field-scale heterogeneity on the infiltration and entrapment of dense nonaqueous phase liquids in saturated formation. J. Contam. Hydrol. 42, 187-218. https://doi.org/10.1016/S0169-7722(99)00092-3
  7. Eguchi, M., H. Myoga, S. Sasaki, Y. Miyake, and M. Fujita. 2001. The characterization of trichloroethylene degradation by Methylomonas sp. KSW III isolated from TCE-contaminated site. Environ. Conserv. Engineer. 30, 553-560. https://doi.org/10.5956/jriet.30.553
  8. Ensign, S.A., M.R. Hyman, and D.J. Arp. 1992. Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylene-grown Xanthobacter strain. Appl. Environ. Microbiol. 58, 3038-3046.
  9. Ewers, J., D. Freier-Schrader, and H.J. Knackmuss. 1990. Selection of trichloroethene (TCE) degrading bacteria that resist inactivation by TCE. Arch. Microbiol. 154, 410-413. https://doi.org/10.1007/BF00276540
  10. Fitch, M.W., G.E. Speitel, Jr. and G. Georgior. 1996. Degradation of trichloroethylene by methanol-grown cultures of Methylosinus trichosporium OB3b pp358. Appl. Environ. Microbiol. 26, 1124-1128.
  11. Folsom, B.R., P.J. Chapman, and P.H. Pritchard. 1990. Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates. Appl. Environ. Microbiol. 56, 1279-1285.
  12. Fox, B.G., J.G. Borneman, L.P. Wackett, and J.D. Lipscomb. 1990. Haloalkene oxidation by the soluble methane monooxygenase from methylosinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry 29, 6419-6425. https://doi.org/10.1021/bi00479a013
  13. French, W.T., R.B. Lewis, N.D. Donald, L.F. Herbert, and L.T. Cynthia. 2002. Effects of n-hexadecane and PM-100 clay on trichloroethylene degradation by Burkholderia cepacia. J. Hazard Mater. 92, 89-102. https://doi.org/10.1016/S0304-3894(01)00376-4
  14. Hamamura, N., C. Page, T. Long, L. Semprini, and D.J. Arp. 1997. Chloroform cometabolism by butane-grown CF8, Pseudomonas butanovora, Mycobacterium vaccae JOB 5, and methane-grown Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 63, 3607-3613.
  15. Hashimoto, A., K. Iwasaki, M. Nakajima, and O. Yagi. 2000. Degradation of trichloroethylene and related compounds by Mycobacterium spp. isolated from soil. Clean Prod. Proc. 2, 167-173. https://doi.org/10.1007/PL00011304
  16. Hyman, M.R., S.A. Russell, R.L. Ely, K.J. Williamson, and D.J. Arp. 1995. Inhibition, inactivation, and recovery of ammoniaoxidizing activity in cometabolism of trichloroethylene by Nitrosomonas europaea. Appl. Environ. Microbiol. 61, 1480-1487.
  17. Kang, J.M., E.Y. Lee, and S.H. Park. 2001. Co-methabolic biodegradation of trichloroethylene by Methylosinus trichosporium is stimulated by low concentrations methane or methanol. Biotechnol. Lett. 23, 1877-1882. https://doi.org/10.1023/A:1012758803576
  18. Kelly, C.J., P.R. Bienkowski, and P.S. Sayler. 2000. Kinetic analysis of a tod-lux bacterial reporter for toluene degradation and trichloroethylene cometabolism. Biotechnol. Bioeng. 69, 256-265. https://doi.org/10.1002/1097-0290(20000805)69:3<256::AID-BIT3>3.0.CO;2-2
  19. Kimberly, H.H., A.S. Luis, J.B. Peter, and D.J. Arp. 2005. Trichloroethylene degradation by butane-oxidizing bacteria causes a spectrum of toxic effects. Appl. Environ. Microbiol. 68, 794-801.
  20. Korea Water Resources Corporation. 2005. Scrutiny and design services for restoration of soil and groundwater contamination.
  21. Landa, A.S., E.M. Sipkema, J. Weijma, A.A.C.M. Beenackers, J. Dolfing, and D.B. Janssen. 1994. Cometabolic degradation of trichloroethylene by Pseudomonas cepacia G4 in a chemostat with toluene as the primary substrate. Appl. Environ. Microbiol. 60, 3368-3374.
  22. Leahy, J.G., A.M. Byrne, and R.H. Olsen. 1996. Comparison of factors influencing trichloroethylene degradation by tolueneoxidizing bacteria. Appl. Environ. Microbiol. 62, 825-833.
  23. Lee, S.W., R.K. David, and D.H. Lim. 2006. Mixed pollutant degradation by Methylosinus trichosporium OB3b expressing either soluble or particulate methane monooxygenase: can the tortoise beat the hare?. Appl. Environ. Microbiol. 55, 7503-7509.
  24. Lee, C.Y. and W.D. Liu. 2006. The effect of saliny conditions on kinetics of trichloroethylene biodegradation by toluene-oxidizing cultures. J. Hazard Mater. 137, 541-549. https://doi.org/10.1016/j.jhazmat.2006.02.031
  25. Lenhard, R.J., J.C. Parker, and J.J. Kaluarachchi. 1989. A model for hysteretic constitutive relations governing multiphase flow, 3. Refinements and numerical simulations. Water Resour. Res. 25, 1727-1736. https://doi.org/10.1029/WR025i007p01727
  26. Malachowsky, K.J., T.J. Phelps, A.B. Teboli, D.E. Minnikin, and D.C. White. 1994. Aerobic mineralization of trichloroethylene, vinyl chloride, and aromatic compounds by Rhodococcus species. Appl. Environ. Microbiol. 60, 542-548.
  27. McDonald, I.R., H. Uchiyama, S. Kambe, O. Yagi, and J.C. Murrell. 1997. The soluble methane monooxygenase gene cluster of the trichloroethylene-degrading methanotroph Methylocystis sp. strain M. Appl. Environ. Microbiol. 63, 1898-1904.
  28. Michael, R.H., A.R. Sterling, L.E. Roger, K.J. Williamson, and D.J. Arp. 1995. Inhibition, inactivation, and recovery of ammoniaoxidizing Activity in cometabolism of trichloroethylene by Nitrosomonas europaea. Appl. Environ. Microbiol. 61, 1480-1487.
  29. Ministry of Environment. Soil contamination corcerning / counterplan level.
  30. Ministry of Environment. 2007. Report of groundwater measurement.
  31. Ministry of Labor. 2000. 99 Research on the actual condition of working environment of manufacturing company.
  32. Oramas, S., M. Rudolf, and L. Ekawan. 2009. Trichloroethylene cometabolic degradation by Rhodococcus sp. L4 induced with plant essential oils. Biodegradation 20, 281-291. https://doi.org/10.1007/s10532-008-9220-4
  33. Park, J.H., J.K. Jerome, and M.A. Linda. 2002. Characterization of the adaptive response to trichloroethylene-mediated stresses in Ralstonia pickettii PKO1. Appl. Environ. Microbiol. 68, 5231-5240. https://doi.org/10.1128/AEM.68.11.5231-5240.2002
  34. Phelps, T.J., J.J. Niedzielski, R.M. Schram, S.E. Herbes, and D.C. White. 1990. Biodegradation of trichloroethylene in continuous recycle expanded-bed bioreactors. Appl. Environ. Microbiol. 56, 1702-1709.
  35. Roger, L.E., K.J. Williamson, R.H. Michael, and D.J. Arp. 1997. Cometabolism of chlorinated solvents by nitrifying bacteria: kinetics, substrate interactions, toxicity effects, and bacterial response. Biotechnol. Bioeng. 54, 520-534. https://doi.org/10.1002/(SICI)1097-0290(19970620)54:6<520::AID-BIT3>3.0.CO;2-L
  36. Saenton, S., T.H. Illangasekare, K. Soga, and T.A. Saba. 2002. Effects of source zone heterogeneity on surfactant-enhanced NAPL dissolution and resulting remediation end-points. J. Contam. Hydrol. 59, 27-44. https://doi.org/10.1016/S0169-7722(02)00074-8
  37. Schwille, F. 1988. Dense chlorinated solvents in porous and fractured media. Lewis Publishers, Boco Raton, FL, USA.
  38. Selvaratnam, C., B.A. Schoedel, B.L. McFarland, and C.F. Kulpa. 1997. Application of the polymerase chain reaction (PCR) and the recerse trancriptase/PCR for determining the fate of phenol degrading Pseudomonas putida ATCC 11172 in a bioaugmented sequencing batch reactor. Appl. Microbiol. Biotechnol. 47, 236-240. https://doi.org/10.1007/s002530050919
  39. Strand, S.E., M.D. Bjelland, and H.D. Stensel. 1990. Kinetics of chlorinated hydrocarbon degradation by suspended cultures of methane oxidizing bacteria. Res. J. Wat. Poll. Control Fed. 62, 124-129.
  40. Sun, A.K. and T.K. Wood. 1996. Trichloroethylene degradation and mineralization by Pseudomonas and Methylosinus trichosporium OB3b. Appl. Microbiol. Biotechnol. 45, 248-256. https://doi.org/10.1007/s002530050679
  41. U.S. Environmental Protection Agency. 1984. National Primary Drinking Water Standard. Proposed Fed. Regist. 49, 24329.
  42. U.S. Environmental Protection Agency. 1990. Laboratory Investigation of Residual Liquid Organics from Spills, Leaks, and Disposal of Hazardous Wastes in Groundwater. EPA/600/6-90/ 004. Environmental Protection Agency, Washington, D.C., USA.
  43. Wilson, J.T. and B.H. Wilson. 1985. Biotransformation of trichloroethylene in soil. Appl. Environ. Microbiol. 49, 242-243.
  44. Yuki, M., U. Hajime, T. Yasunori, and H. Katsutoshi. 2004. Addition of aromatic substrates restores trichloroethylene degradation activity in Pseudomonas putida F1. Appl. Environ. Microbiol. 70, 2830-2835. https://doi.org/10.1128/AEM.70.5.2830-2835.2004