Phylogenetic Diversity of Bacteria Associated with the Marine Sponges, Spirastrella abata and Cinachyrella sp.

해면 Spirastrella abata와 Cinachyrella sp.의 공생 세균의 계통학적 다양성

  • Received : 2010.05.31
  • Accepted : 2010.06.15
  • Published : 2010.06.30

Abstract

The bacterial community structure of two marine sponges, Spirastrella abata and Cinachyrella sp. collected from Jeju Island, in April 2009, was analyzed by 16S rDNA-denaturing gradient gel electrophoresis (DGGE). DGGE banding patterns indicated 8 and 7 bands for Spirastrella abata and Cinachyrella sp., respectively. Comparative sequence analysis of variable DGGE bands revealed from 92% to 100% similarity to the known published sequences. The bacterial groups associated with Spirastrella abata were Alphaproteobacteria and Deltaproteobacteria. The bacterial community of Cinachyrella sp. consisted of Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria. Alphaproteobacteria was common and predominant in both the sponge species. Deltaproteobacteria was found only in Spirastrella abata while Actinobacteria and Gammaproteobacteria were found only in Cinachyrella sp. The results revealed that though the common bacterial group was found in both the sponges, the bacterial community profiles differed between the two sponge species obtained from the same geographical location.

2009년 4월 제주도의 운진항에서 채집한 해양 해면 Spirastrella abata와 Cinachyrella sp.의 공생 세균의 주요 군집구조를 16SrDNA-denaturing gradient gel electrophoresis (DGGE) 방법을 이용하여 비교 분석하였다. S. abata와 Cinachyrella sp.는 각각 7개와 8개의 DGGE 밴드를 나타내었으며 이들을 적출하여 염기서열을 분석한 결과, NCBI에 등록된 서열들과 92-100%의 유사도를 나타내었다. S. abata의 주요 공생세균은 Alphaproteobacteria와 Deltaproteobacteria에 속하였으며, Cinachyrella sp.의 경우 Alphaproteobacteria, Gammaproteobacteria와 Actinobacteria에 속하는 세균으로 구성되었다. 두 종의 해면에서 공통되는 공생세균 그룹은 Alphaproteobacteria였으며 이 세균 그룹은 두 종의 해면 모두에서 우점하였다. Deltaproteobacteria는 S. abata에서, Actinobacteria와 Gammaproteobacteria는 Cinachyrella sp.에서만 관찰되었다. 동일지역에서 채집한 서로 다른 두 종의 해면은 각각 다른 공생세균 군집구조를 나타내었다.

Keywords

References

  1. Anderson, S.A., P.T. Northcote, and M.J. Page. 2010. Spatial and temporal variability of the bacterial community in different chemotypes of the New Zealand marine sponge Mycale hentscheli. FEMS Microb. Ecol. 72, 328-342. https://doi.org/10.1111/j.1574-6941.2010.00869.x
  2. Cho, H.H. and J.S. Park. 2009. Comparative analysis of the community of culturable bacteria associated with sponges, Spirastrella abata and Spirastrella panis by 16S rDNA-RFLP. Kor. J. Microbiol. 45, 155-162.
  3. Friedrich, A.B., J. Hacker, I. Fischer, P. Proksch, and U. Hentschel. 2001. Temporal variations of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. FEMS Microbiol. Ecol. 38, 105-113. https://doi.org/10.1111/j.1574-6941.2001.tb00888.x
  4. Hardoim, C.C., R. Costa, F.V. Araujo, E. Hajdu, R. Peixoto, U. Lins, A.S. Rosado, and J.D. van Elsas. 2009. Diversity of bacteria in the marine sponge Aplysina fulva in Brazilian coastal waters. Appl. Environ. Microbiol. 75, 3331-3343. https://doi.org/10.1128/AEM.02101-08
  5. Isaacs, L.T., J. Kan, L. Nguyen, P. Videau, M.A. Anderson, T.L. Wright, and R.T. Hill. 2009. Comparison of the bacterial communities of wild and captive sponge Clathria prolifera from the Chesapeake Bay. Mar. Biotechnol. (NY) 11, 758-770. https://doi.org/10.1007/s10126-009-9192-3
  6. Lafi, F.F., M.J. Garson, and J.A. Fuerst. 2005. Culturable bacterial symbionts isolated from two distinct sponge species (Pseudoceratina clavata and Rhabdastrella globostellata) from the Great Barrier Reef display similar phylogenetic diversity. Microb. Ecol. 50, 213-220. https://doi.org/10.1007/s00248-004-0202-8
  7. Lee, O.O., Y.H. Wong, and P.Y. Qian. 2009. Inter- and intraspecific variations of bacterial communities associated with marine sponges from San Juan Island, Washington. Appl. Environ. Microbiol. 75, 3513-3521. https://doi.org/10.1128/AEM.00002-09
  8. Li, Z., L. He, and X. Miao. 2007. Cultivable bacterial community from South China Sea sponge as revealed by DGGE fingerprinting and 16S rDNA phylogenetic analysis. Curr. Microbiol. 55, 465-472. https://doi.org/10.1007/s00284-007-9035-2
  9. Li, Z.Y., L.M. He, J. Wu, and Q. Jiang. 2006. Bacterial community diversity associated with four marine sponges from the South China Sea based on 16S rDNA-DGGE fingerprinting. J. Exp. Mar. Biol. Ecol. 329, 75-85. https://doi.org/10.1016/j.jembe.2005.08.014
  10. Li, Z.Y. and Y. Liu. 2006. Marine sponge Craniella austrialiensisassociated bacterial diversity revelation based on 16S rDNA library and biologically active actinomycetes screening, phylogenetic analysis. Lett. Appl. Microbiol. 43, 410-416. https://doi.org/10.1111/j.1472-765X.2006.01976.x
  11. Mangano, S., L. Michaud, C. Caruso, M. Brilli, V. Bruni, R. Fani, and A.L. Giudice. 2009. Antagonistic interactions between psychrotrophic cultivable bacteria isolated from Antarctic sponges: A preliminary analysis. Res. Microbiol. 160, 27-37. https://doi.org/10.1016/j.resmic.2008.09.013
  12. Mohamed, N., J.J. Enticknap, J.E. Lohr, S.M. McIntosh, and R.T. Hill 2008. Changes in bacterial communities of the marine sponge Mycale laxissima on transfer into aquaculture. Appl. Environ. Microbiol. 74, 1209-1222. https://doi.org/10.1128/AEM.02047-07
  13. Mohamed, N.M., V. Rao, M.T. Hamann, M. Kelly, and R.T. Hill. 2008. Monitoring bacterial diversity of the marine sponge Ircinia strobilina upon transfer into aquaculture. Appl. Environ. Microbiol. 74, 4133-4143. https://doi.org/10.1128/AEM.00454-08
  14. Muscholl-Silberhorn, A., V. Thiel, and J.F. Imhoff. 2008. Abundance and bioactivity of cultured sponge-associated bacteria from the Mediterranean Sea. Microb. Ecol. 55, 94-106. https://doi.org/10.1007/s00248-007-9255-9
  15. Park, J.S., J.J. Sim, and K.D. An. 2009. Community structure of bacteria associated with two marine sponges from Juju Island based on 16S rDNA-DGGE profile. Kor. J. Microbiol. 45, 170-176.
  16. Radwan, M., A. Hanora, J. Zan, N.M. Mohamed, D.M. Abo-Elmatty, S.H. Abou-El-Ela, and R.T. Hill. 2010. Bacterial community analyses of two Red Sea sponges. Mar. Biotechnol. 12, 350-360. https://doi.org/10.1007/s10126-009-9239-5
  17. Ramm, W., W. Schatton, I. Wagner-Dobler, V. Wray, M. Nimtz, H. Tokuda, F. Enjyo, H. Nishino, W. Beil, R. Heckmann, V. Lurtz, and S. Lang. 2004. Diglucosyl-glycerolipids from the marine sponge-associated Bacillus pumilus strain AAS3: Their production, enzymatic modification and properties. Appl. Microbiol. Biotechnol. 64, 497-504. https://doi.org/10.1007/s00253-003-1471-8
  18. Selvin, J. 2009. Exploring the antagonistic producer Streptomyces MSI051: Implications of polyketide synthase gene type II and a ubiquitous defense enzyme phospholipase A2 in the host sponge Dendrilla nigra. Curr. Microbiol. 58, 459-463. https://doi.org/10.1007/s00284-008-9343-1
  19. Sipkema, D. and H.W. Blanch. 2009. Spatial distribution of bacteria associated with the marine sponge Tethya californiana. Mar. Biol. 157, 627-638.
  20. Taylor, M.W., P.J. Schupp, R. de Nys, S. Kjelleberg, and P.D. Steinberg. 2005. Biogeography of bacteria associated with the marine sponge Cymbastela concentrica. Environ. Microbiol. 7, 419-433. https://doi.org/10.1111/j.1462-2920.2004.00711.x
  21. Thiel, V., S. Leininger, R. Schmaljohann, F. Brummer, and J.F. Imhoff. 2007. Sponge-specific bacterial associations of the Mediterranean sponge Chondrilla nucula (demospongiae, tetractinomorpha). Microb. Ecol. 54, 101-111. https://doi.org/10.1007/s00248-006-9177-y
  22. Thiel, V., S.C. Neulinger, T. Staufenberger, R. Schmaljohann, and J.F. Imhoff. 2007. Spatial distribution of sponge-associated bacteria in the Mediterranean sponge Tethya aurantium. FEMS Microbiol. Ecol. 59, 47-63. https://doi.org/10.1111/j.1574-6941.2006.00217.x
  23. Thoms, C., M. Horn, W. Wagner, U. Hentschel, and P. Proksch. 2003. Monitoring microbial diversity and natural products profiles of the sponge Aplysina cavernicola following trasplantation. Mar. Biol. 142, 685-692. https://doi.org/10.1007/s00227-002-1000-9
  24. Weisz, J.B., U. Hentschel, N. Lindquist, and C.S. Martens. 2007. Linking abundance and diversity of sponge-associated microbial communities to metabolic differences in host sponges. Mar. Biotechnol. 152, 475-483.
  25. Wichels, A., S. Wurtz, H. Dopke, C. Schutt, and G. Gerdts. 2006. Bacterial diversity in the Breadcrumb sponge Halichondria panicea (pallas). FEMS Microbiol. Ecol. 56, 102-118. https://doi.org/10.1111/j.1574-6941.2006.00067.x
  26. Zhang, H., W. Zhang, Y. Jin, M. Jin, and X. Yu. 2008. A comparative study on the phylogenetic diversity of culturable actinobacteria isolated from five marine sponge species. Antonie van Leeuwenhoek 93, 241-248. https://doi.org/10.1007/s10482-007-9196-9