Bacterial Community Structure of Food Wastewater Treatment System Combined with Rotating Biological Contactor and Tapered Aeration Reactor

회전접촉장치와 점감포기 반응조를 이용한 식품폐수 처리시설의 세균군집 구조

  • Jeong, Soon-Jae (Department of Microbiology, Chungbuk National University) ;
  • Nam, Ji-Hyun (Department of Microbiology, Chungbuk National University) ;
  • Bae, Woo-Keun (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Lee, Dong-Hun (Department of Microbiology, Chungbuk National University)
  • Received : 2010.05.13
  • Accepted : 2010.06.13
  • Published : 2010.06.30

Abstract

A pilot-scale wastewater treatment plant combined with rotating biological contactor and tapered aeration reactors was operated with the wastewater discharged from a food factory for 5 months. The bacterial communities of this plant were investigated by terminal restriction fragment length polymorphism (T-RFLP) and phylogenetic analysis of 16S rRNA genes. In spite of high concentration of nitrogen and phosphorus as well as organic carbon, removal efficiency of chemical oxygen demand, total nitrogen, and total phosphorus was 98%, 93%, and 95%, respectively. Bacterial community at the initial operation stage was clearly distinguished from that of the stable operation stage. The most predominant phylum in the sample of stable stage was Bacteroidetes. Major population of operation period was Haliscomenobacter, Sphaerotilus, and candidate division TM7, which were classified as filamentous bacteria. However, sludge bulking caused by these bacteria was not observed. The population that has a close relationship with Haliscomenobacter increased during the stable operation stage, emerging as the most predominant group. These results suggest that the filamentous bacteria participated in nutrient removal when using rotating biological contactor and tapered aeration reactor.

회전접촉장치와 점감포기 생물반응조를 이용한 실험용 규모의 폐수처리 공정을 식품산업폐수를 유입수로 사용하여 5개월 동안 운전하였으며, 16S rRNA 유전자의 말단단편길이다형성(T-RFLP) 분석과 계통분류학적 분석방법으로 폐수처리 공정의 세균군집을 조사하였다. 유기물 외에 고농도의 질소와 인이 함유된 식품산업폐수를 적용하였음에도 불구하고, 안정화 기간 동안 화학적산소요구량, 총질소, 총인의 제거효율은 각각 98%, 93%, 95% 이상이었다. 가동 초기의 세균 군집과 안정화 이후의 세균군집은 뚜렷하게 구분되었으며, 안정화 기간 동안 가장 우점한 세균군집은 Bacteroidetes였다. 운전 기간중의 주요 세균 군집은 사상균으로 분류되는 Haliscomenobacter, Sphaerotilus, Candidate division TM7이었으나, 이들 사상균에 의한 슬러지 팽화 현상은 관찰할 수 없었다. Haliscomenobacter와 유연관계가 가까운 세균군집이 안정화 시기에 증가하여 최대 우점 군집이 되었다. 본 연구결과는 회전접촉장치와 점감포기 생물반응조를 이용한 폐수처리공정의 영양물질 제거에 사상균이 중요함을 제시한다.

Keywords

References

  1. Al-Mutairi, N.Z., F.A. Al-Sharifi, and S.B. Al-Shammari. 2008. Evaluation study of a slaughterhouse wastewater treatment plant including contact-assisted activated sludge and DAF. Desalination 225, 167-175. https://doi.org/10.1016/j.desal.2007.04.094
  2. APHA. 1998. Standard Methods for the Examination of Water and Wastewater. American Public Health Association/American Water Works Association/Water Pollution Control Federation, Washington, D.C., USA.
  3. Burmolle, M., J.S. Webb, D. Rao, L.H. Hansen, S.J. Sorensen, and S. Kjelleberg. 2006. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl. Environ. Microbiol. 72, 3916-3923. https://doi.org/10.1128/AEM.03022-05
  4. Chavan, A. and S. Mukherji. 2008. Treatment of hydrocarbonrich wastewater using oil degrading bacteria and phototrophic microorganisms in rotating biological contactor: Effect of N:P ratio. J. Hazard. Mater. 154, 63-72. https://doi.org/10.1016/j.jhazmat.2007.09.106
  5. Chen, Z., Q. Wen, J. Wang, and F. Li. 2006. Simultaneous removal of carbon and nitrogen from municipal-type synthetic wastewater using net-like rotating biological contactor NRBC. Process Biochem. 41, 2468-2472. https://doi.org/10.1016/j.procbio.2006.06.003
  6. Chun, J., A. Huq, and R.R. Colwell. 1999. Analysis of 16S-23S rRNA intergenic spacer regions of Vibrio cholerae and Vibrio minicus. Appl. Environ. Micobiol. 65, 2202-2208.
  7. Fode-Vaughan, K.A., C.F. Wimpee, C.C. Remsen, and M.L. Collins. 2001. Detection of bacteria in environmental samples by direct-PCR without DNA extraction. Biotechniques 31, 598-600.
  8. Forster, S., H.M. Lappin-Scott, J.R. Snape, and J. Porter. 2003. Rains, drains and active strains: towards online assessment of wastewater bacterial communities. J. Microbiol. Methods 55, 859-864. https://doi.org/10.1016/j.mimet.2003.08.004
  9. Gaval, G. and J. Pernelle. 2003. Impact of the repetition of oxygen deficiencies on the filamentous bacteria proliferation in activated sludge. Water Res. 37, 1991-2000. https://doi.org/10.1016/S0043-1354(02)00421-9
  10. Holt, J.G., N. Krieg, P.H.A. Sneath, J.T. Stalet, and S.T. Williams. 1994. Bergey's Manual of Determinative Bacterialogy, 9th ed. The Williams & Wilkins Co., Baltimore, USA.
  11. Hoyle, B.D. and W.J. Costerton. 1991. Bacterial resistance to anti-biotics: the role of biofilms. Prog. Drug Res. 37, 91-105.
  12. Huber, T., G. Faulkner, and P. Hugenholtz. 2004. Bellerophon; a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20, 2317-2319. https://doi.org/10.1093/bioinformatics/bth226
  13. Hugenholtz, P., G.W. Tryson, R.I. Webb, A.M. Wagner, and L.L. Blackall. 2001. Investigation of candidate division TM7, a recently recognized major lineage of the domain Bacteria with no known pure-culture representatives. Appl. Environ. Microbiol. 67, 411-419. https://doi.org/10.1128/AEM.67.1.411-419.2001
  14. Juke, T.H. and C.R. Cantor. 1969. Evolution of protein molecules. In H.N. Munro (ed.) Mammalian Protein Metabolism. Academic Press, New York, N.Y., USA.
  15. Kim, M.D., M. Song, M. Jo, S.G. Shin, J.H. Khim, and S. Hwang. 2010. Growth condition and bacterial community for maximum hydrolysis of suspended organic materials in anaerobic digestion of food waste-recycling wastewater. Appl. Microbiol. Biotechnol. 85, 1611-1618. https://doi.org/10.1007/s00253-009-2316-x
  16. Lane, D.J. 1991. 16S/23S rRNA sequencing. In E. Stackebrandt and M. Goodfellow (eds.), Nucleic Acid Techniques in Bacterial Systematics. Wiley, Chichester, UK.
  17. Lee, H., E. Choi, Z. Yun, and Y.K. Park. 2008. Microbial structure and community of RBC biofilm removing nitrate and phosphorus from domestic wastewater. J. Microbiol. Biotechnol. 18, 1459-1469.
  18. Li, H., Y. Chen, and G. Gu. 2008. The effect of propionic to acetic acid ratio on anaerobic-aerobic low dissolved oxygen biological phosphorus and nitrogen removal. Biores. Technol. 9910, 4400-4407.
  19. Lobos, J., C. Wisniewski, M. Heran, and A. Grasmick. 2008. Sequencing versus continuous membrane bioreactors: Effect of substrate to biomass ratio F/M on process performance. J. Membrane Science 317, 71-77. https://doi.org/10.1016/j.memsci.2007.08.041
  20. Malandra, L., G. Wolfaardt, A. Zietsman, and M. Viljoen-Bloom. 2003. Microbiology of a biological contactor for winery wastewater treatment. Water Res. 3717, 4125-4134.
  21. Mba, D. and R. Bannister. 2007. Ensuring effluent standards by improving the design of rotating biological contactors. Desalination 208, 204-215. https://doi.org/10.1016/j.desal.2006.04.079
  22. Miller, D.N., J.E. Arrieta, G. Muyzer, C. Winter, and G.J. Hern. 1999. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol. 65, 4715-4724.
  23. N-Chen, G.D., A.A.L. Zinatizadeh, and L.K. Lee. 2006. Performance of a three-stage aerobic RBC reactor in food canning wastewater treatment. Biochem. Eng. J. 30, 297-302. https://doi.org/10.1016/j.bej.2006.05.013
  24. Pernelle, J., G. Gaval, E. Cotteux, and P. Duchene. 2001. Influence of transient substrate overloads on the proliferation of filamentous bacterial population in an activated sludge pilot plant. Water Res. 35, 129-134. https://doi.org/10.1016/S0043-1354(00)00224-4
  25. Ren, N., D. Xing, B.E. Rittmann, L. Zhao, T. Xie, and X. Zhao. 2007. Microbial community structure of ethanol type fermentation in bio-hydrogen production. Environ. Microbiol. 9, 1112-1125. https://doi.org/10.1111/j.1462-2920.2006.01234.x
  26. Richard, M., O. Hao, and D. Jenkins. 1985. Growth kinetics of Sphaerotilus species and their significance in activated sludge bulking. J. Water Pollut. Control Fed. 57, 68-81.
  27. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstruction phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  28. Silva, C.C., E.C. Jesus, A.P. Torres, M.P. Sousa, V.M. Santiago, and V.M. Oliveira. 2010. Investigation of bacterial diversity in membrane bioreactor and conventional activated sludge processes from petroleum refineries using phylogenetic and statistical approaches. J. Microbiol. Biotechnol. 20, 447-459.
  29. Sirianuntapiboon, S. and C. Chuamkaew. 2007. Packed cage rotating biological contactor system for treatment of cyanide wastewater. Bioresour. Technol. 98, 266-272. https://doi.org/10.1016/j.biortech.2006.01.014
  30. Sneath, P.H.A. and R.R. Sokal. 1973. Numerical taxonomy. The principles and practice of numerical classification. W.H. Freeman, San Francisco, USA.
  31. Strom, P.F. and D. Jenkins. 1984. Identification and significance of filamentous microorganisms in activated sludge. J. Water Pollut. Control Fed. 56, 449-459.
  32. Tallex, G., J. Garinier, G. Billen, and M. Gousailles. 2007. Nitrous oxide emissions from denitrifying activated sludge of urban wastewater treatment plants, under anoxia and low oxygenation. Bioresour. Technol. 99, 2200-2209.
  33. Thomsen, T.R., B.V. Kjellerup, and J.L. Nielsen. 2002. In situ studies of the phylogeny and physiology of filamentous bacteria with attached growth. Environ. Microbiol. 4, 383-391. https://doi.org/10.1046/j.1462-2920.2002.00316.x
  34. Wagner, M. and A. Loy. 2002. Bacterial community composition and function in sewage treatment system. Curr. Opin. Biotechnol. 13, 218-227. https://doi.org/10.1016/S0958-1669(02)00315-4