Analysis of Sequence Diversity of mcyA Gene Involved in Microcystin Synthesis in Korean Reservoirs

국내 호수에서 Microcystins의 생합성에 관여하는 mcyA 유전자의 염기서열 다양성 분석

  • Oh, Kyoung-Hee (Department of Environmental Engineering, Chungbuk National University) ;
  • Han, Ah-Won (Department of Environmental Engineering, Chungbuk National University) ;
  • Cho, Young-Cheol (Department of Environmental Engineering, Chungbuk National University)
  • 오경희 (충북대학교 공과대학 환경공학과) ;
  • 한아원 (충북대학교 공과대학 환경공학과) ;
  • 조영철 (충북대학교 공과대학 환경공학과)
  • Received : 2010.04.09
  • Accepted : 2010.05.05
  • Published : 2010.06.30

Abstract

The sequence diversity of mcyA gene involved in synthesis of microcystins was analyzed in Microcystis spp. isolated from the Korean reservoirs and in the environmental samples taken from the Daechung, Chungju, Yongdam, Soyang, and Euam Reservoirs at the cyanobacterial blooming season. It was estimated that the sequences of mcyA gene in the isolated Microcystis spp. were much conserved when compared with those in GenBank database. A few kinds of clones were dominant in the investigated environmental samples, occupying 87 to 100% of total clones. No mcyA sequences originated from Anabaena spp. or Planktothrix spp. was found. These results indicated that microcystins are produced mainly by Microcystis spp. and the sequences of mcyA genes are much conserved in the investigated Korean reservoirs.

국내에서 분리된 독소생산 Microcystis 속과 조류 대발생 시기에 대청호, 충주호, 용담호, 소양호, 및 의암호에서 채취한 시료에서 조류 독소인 microcystins의 생합성에 관여하는 mcyA 유전자의 염기서열 다양성을 분석하였다. GenBank에 등록된 mcyA 염기서열과 비교한 결과, 국내 호소에서 분리된 Microcystis 속의 mcyA 유전자 염기서열은 매우 낮은 다양성을 나타내었다. 환경 시료 분석 결과, 2-3종류의 clone이 전체의 87-100%를 차지하였으며, Anabaena 속이나 Planktothrix 속의 mcyA 유전자와 유사한 염기서열은 발견되지 않았다. 이러한 결과로 볼 때, 대상 호소에서 microcystins는 주로 Microcystis 속에 의해 생산되며, 독소 생산에 관여하는 mcyA 유전자의 염기서열은 보존되어 있는 것으로 판단된다.

Keywords

References

  1. Ahn, C.Y., H.S. Kim, B.D. Yoon, and H.M. Oh. 2003. Influence of rainfall on cyanobacterial bloom in Daechung Reservoir. Kor. J. Limnol. 36, 413-419.
  2. American Public Health Association. 2005. Standard Methods for the Examination of Water and Wastewater, 21th edition. American Public Health Association, Washington, D.C., USA.
  3. Cho, J.E., S.W. Bang, and M.S. Han. 2004. Development of oligonucleotide primers for the detection of harmful Microcystis in water. Bull. Environ. Contam. Toxicol. 72, 655-662.
  4. Dittmann, E. and T. Borner. 2005. Genetic contributions to the risk assessment of microcystin in the environment. Toxicol. Appl. Pharm. 203, 192-200. https://doi.org/10.1016/j.taap.2004.06.008
  5. Falconer, I., J. Bartram, I. Chorus, T. Kuiper-Goodman, H. Utkilen, M. Burch, and G.A. Codd. 1999. Safe levels and safe practices, pp. 161-182. In I. Chorus and J. Bartram (eds.), Toxic Cyanobacteria in water, A guide to their public health consequences, monitoring and management. Spon Press, London, UK.
  6. Furukawa, K., N. Noda, S. Tsuneda, T. Saito, T. Itayama, and Y. Inamori. 2006. Highly sensitive real-time PCR assay for quantification of toxic cyanobacteria based on microcystin synthetase A gene. J. Biosci. Bioeng. 102, 90-96. https://doi.org/10.1263/jbb.102.90
  7. Hisbergues, M., G. Christiansen, L. Rouhiainen, K. Sivonen, and T. Borner. 2003. PCR-based identification of microcystin-producing genotypes of different cyanobacterial genera. Arch. Microbiol. 180, 402-410. https://doi.org/10.1007/s00203-003-0605-9
  8. Hotto, A.M., M.F. Satchwell, and G.L. Boyer. 2007. Molecular characterization of potential microcystin-producing cyanobacteria in Lake Ontario embayments and nearshore waters. Appl. Environ. Microbiol. 73, 4570-4578. https://doi.org/10.1128/AEM.00318-07
  9. Kardinaal, W.E.A. and P.M. Visser. 2005. Dynamics of cyanobacterial toxins, pp. 41-64. In J. Huisman, H.C.P. Matthijs, and P.M. Visser (eds.), Harmful Cyanobacteria. Springer, Dordrecht, The Netherlands.
  10. Kim, B., H.S. Kim, H.D. Park, K. Choi, and J.G. Park. 1999. Microcystin content of cyanobacterial cells in Korean reservoirs and their toxicity. Korean J. Limnol. 32, 288-294.
  11. Larkin, M.A., G. Blackshields, N.P. Brown, R. Chenna, P.A. McGettigan, H. McWilliam, F. Valentin, I.M. Wallace, A. Wilm, R. Lopez, J.D. Thompson, T.J. Gibson, and D.G. Higgins. 2007. ClustalW2 and ClustalX version 2. Bioinformatics 23, 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  12. Lee, K.L., W.H Jheong, J.M. Kim, and H.S. Kim. 2007. Detection of toxigenicity of cyanobacteria by molecular method. Kor. J. Limnol. 40, 149-154.
  13. Lee, H.K., J.H. Kim, S.A. Yoo, T.S. Ahn, C.K. Kim, and D.H. Lee. 2003. Primer evaluation for the detection of toxigenic Microsystis by PCR. Kor. J. Microbiol. 39, 166-174.
  14. Lee, H.S., K.H. Oh, and Y.C. Cho. 2008. Isolation of cyanobacteria producing microcystin from lakes. Kor. J. Microbiol. 44, 251-257.
  15. Maatouk, I., N. Bouaich, D. Fontan, and Y. Lev. 2002. Seasonal variation of microcystin concentrations in the Saint-Caprais Reservoir (France) and their removal in a small full-scale treatment plant. Water Res. 36, 2891-2897. https://doi.org/10.1016/S0043-1354(01)00507-3
  16. Neilan, B.A., D. Jacobs, and A.E. Goodman. 1995. Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. Appl. Environ. Microbiol. 61, 3875-3883.
  17. Park, J.G. 2005. Developmental characteristic of cyanobacterial bloom in Lake Daecheong. Korean J. Environ. Biol. 23, 304-314.
  18. Park, H.D., B. Kim, E. Kim, and T. Okino. 1998. Hepatotoxic microcystins and neurotoxic anatoxin-a in cyanobacterial blooms from Korean lakes. Environ. Toxicol. Water Qual. 13, 225-234. https://doi.org/10.1002/(SICI)1098-2256(1998)13:3<225::AID-TOX4>3.0.CO;2-9
  19. Pouria, S., A. Deandrade, J. Barbosa, R.L. Carvalcanti, V.T.S. Barreto, C.J. Ward, W. Preiser, G.K. Poon, G.H. Neild, and G.A. Codd. 1998. Fatal microcystin intoxification in haemodialysis unit in Caruaru, Brazil. Lancet 352, 21-26. https://doi.org/10.1016/S0140-6736(97)12285-1
  20. Rantala, A., D.P. Fewer, M. Hisbergues, L. Rouhiainen, J. Vaitomaa, T. Borner, and K. Sivonen. 2004. Phylogenetic evidence for the early evolution of microcystin synthesis. Proc. Nat. Acad. Sci. USA 101, 568-573. https://doi.org/10.1073/pnas.0304489101
  21. Richardson, L.L., R. Sekar, J.L. Myers, M. Gantar, J.D. Voss, L. Kaczmarsky, E.R. Remily, G.L. Boyer, and P.V. Zimba. 2007. The presence of the cyanobacterial toxin microcystin in black band disease of corals. FEMS Microbiol. Lett. 272, 182-187. https://doi.org/10.1111/j.1574-6968.2007.00751.x
  22. Rinta-Kanto, J.M., M.A. Saxton, J.M. DeBruyn, J.L. Smith, C.H. Marvin, K.A. Krieger, G.S. Sayler, G.L. Boyer, and S.W. Wilhelm. 2009. The diversity and distribution of toxigenic Microcystis spp. in present day and archived pelagic and sediment samples from Lake Erie. Harmful Algae 8, 385-394. https://doi.org/10.1016/j.hal.2008.08.026
  23. Rinta-Kanto, J.M. and S.W. Wilhelm. 2006. Diversity of microcystin-producing cyanobacteria in spatially isolated regions of Lake Erie. Appl. Environ. Microbiol. 72, 5083-5085. https://doi.org/10.1128/AEM.00312-06
  24. Rochelle, P.A., J.C. Fry, R.J. Parkes, and A.J. Weightman. 1992. DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities. FEMS Microbiol. Lett. 79, 59-65.
  25. Saker, M.L., M. Vale, D. Kramer, and V.M. Vasconcelos. 2007. Molecular techniques for the early warning of toxic cyanobacteria blooms in freshwater lakes and rivers. Appl. Microbiol. Biotechnol. 75, 441-449. https://doi.org/10.1007/s00253-006-0813-8
  26. Shirai, M., K. Matumaru, A. Ohotake, Y. Takamura, T. Aida, and M. Nakano. 1989. Development of a solid medium for growth and isolation of axenic Microcystis strains (cyanobacteria). Appl. Environ. Microbiol. 55, 2569-2571.
  27. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596-1599. https://doi.org/10.1093/molbev/msm092
  28. Vaitomaa, J., K. Rantala, P. Rouhiainen, L. Mokelke, and K. Sivonen. 2003. Quantitative real-time PCR for determination of microcystin synthetase E copy numbers for Microcystis and Anabaena in lakes. Appl. Environ. Microbiol. 69, 7289-7297. https://doi.org/10.1128/AEM.69.12.7289-7297.2003
  29. Welker, M. and H. Von Dhren. 2006. Cyanobacterial peptidesnature's own combinatorial biosynthesis. FEMS Microbiol. Rev. 30, 530-563. https://doi.org/10.1111/j.1574-6976.2006.00022.x
  30. Xu, Y., Z. Wu, B. Yu, X. Peng, G. Yu, Z. Wei, G. Wang, and R. Li. 2008. Non-microcystin producing Microcystis wesenbergii (Komarek) Komarek (Cyanobacteria) representing a main waterbloom- forming species in Chinese waters. Environ. Pollut. 156, 162-167. https://doi.org/10.1016/j.envpol.2007.12.027
  31. Yilmaz, M., E.J. Phlips, and D. Tillett. 2009. Improved methods for the isolation of cyanobacterial DNA from environmental samples. J. Phycol. 45, 517-521. https://doi.org/10.1111/j.1529-8817.2009.00651.x
  32. Zurawell, R.W., H. Chen, J.M. Burke, and E.E. Prepas. 2005. Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in fresh water environments. J. Toxicol. Environ. Health Part B 8, 1-37. https://doi.org/10.1080/10937400590889412