References
- Aasen, I.M., S. markussen, T. Moretro, T. Katla, L. Axelsson, and K. Naterstad. 2003. Interactions of the bacteriocins sakacin P and nisin with food constituents. Int. J. Food Microbiol. 87, 35-43. https://doi.org/10.1016/S0168-1605(03)00047-3
- Ahmad, C., C. Natascha, C. Haiqin, Z. Jianxin, T. Jian, Z. Hao, and C. Wei. 2010. Bifidin I-A new bacteriocin produced by Bifidobacterium infantis BCRC 14602: purification and partial amino acid sequence. Food Control 21, 746-753. https://doi.org/10.1016/j.foodcont.2009.11.003
- Ananou, S., A. Banos, M. Maqueda, M. Martinez-Bueno, A. Galvez, and E. Valdivia. 2010. Effect of combined physicochemical treatments based on enterocin AS-48 on the control of Listeria monocytogenes and Staphylococcus aureus in a model cooked ham. Food Control 21, 478-486. https://doi.org/10.1016/j.foodcont.2009.07.010
- Anthony, T., T. Rajesh, N. Kayalvizhi, and P. Gunasekaran. 2009. Influence of medium components and fermentation conditions on the production of bacteriocin(s) by Bacillus licheniformis AnBa9. Biores. Technol. 100, 872-877. https://doi.org/10.1016/j.biortech.2008.07.027
- Chawla, S.P., R. Chander, and A. Sharma. 2006. Safe and shelfstable natural casing using hurdle technology. Food Control 17, 127-131. https://doi.org/10.1016/j.foodcont.2004.09.011
- Cleveland, J., T.J. Montville, I.F. Nes, and M.L. Chikindas. 2001. Bacteriocins: safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71, 1-20. https://doi.org/10.1016/S0168-1605(01)00560-8
- Davies, E.A., C.F. Milne, H.E. Bevis, R.W. Potter, J.M. Harris, G.C. Williams, L.V. Thomas, and J. Delves-Broughton. 1999. Effective use of nisin to control lactic acid bacterial spoilage in vacuum-packed Bologna-type sausage. J. Food Prot. 62, 1004-1010. https://doi.org/10.4315/0362-028X-62.9.1004
- Ferrand, C., F. Marc, P. Fritsch, P. Cassand, and G.D. Blanquat. 2000. Mutagenicity and genotoxicity of sorbic acid-amine reaction products. Food Addit. Contam. 17, 895-901. https://doi.org/10.1080/026520300750038063
- Fyfe, L., F. Armstrong, and J. Stewart. 1998. Inhibition of Listeria monocytogenes and Salmonella enteritidis by combinations of plant oils and derivatives of benzoic acid: the development of synergistic antimicrobial combinations. Int. J. Antimicrob. Agents 9, 195-199. https://doi.org/10.1016/S0924-8579(97)00051-4
- Garcia, M.T., M.M. Canamero, R. Lucas, N.B. Omar, R.P. Pulido, and A. Galvez. 2004. Inhibition of Listeria monocytogenes by enterocin EJ97 produced by Enterococcus faecalis EJ97. Int. J. Food Microbiol. 90, 161-170. https://doi.org/10.1016/S0168-1605(03)00051-5
- Gomes, B.C., C.T. Esteves, I.C.V. Palazzo, A.L.C. Darini, G.E. Felis, L.A. Sechi, B.D.G.M. Franco, and E.C.P. De Martinis. 2008. Prevalence and characterization of Enterococcus spp. isolated from Brazilian foods. Food Microbiol. 25, 668-675. https://doi.org/10.1016/j.fm.2008.03.008
- Grande, M.J., R. Lucas, H. Abriouel, E. Valdivia, N.B. Omar, M. Maqueda, M. martinez-Bueno, M. Martinez-Canamero, and A. Galvez. 2006. Inhibition of toxicogenic Bacillus cereus in rice-based foods by enterocin AS-48. Int. J. Food Microbiol. 106, 185-194. https://doi.org/10.1016/j.ijfoodmicro.2005.08.003
- Herranz, C., P. Casaus, S. Mukhopadhyay, J.M. Martinez, J.M. Rodriguez, I.F. Nes, P.E. Hernandez, and L.M. Cintas. 2001. Enterococcus faecium P21: a strain occurring naturally in dryfermented sausages producing the class II bacteriocins enterocin A and enterocin B. Food Microbiol. 18, 115-131. https://doi.org/10.1006/fmic.2000.0382
- Hurst, A. 1981. Nisin. Adv. Appl. Microbiol., 27, 85-123. https://doi.org/10.1016/S0065-2164(08)70342-3
- Jo, S.H., H.J. Kim, E.J. Choi, and S.D. Ha. 2009. Trends analysis of food-borne outbreaks in United States of America, Japan and Korea. Safe Food 4, 3-14.
- Jo, S.B., Y.U. Lee, and J.H. Kim. 1998. A study on synergistic effect of chitosan and sorbic acid on growth inhibition of Escherichia coli O157:H7 and Staphylococcus aureus. J. Food. Hyg. Safety 13, 112-120.
- Kang, J.H. and M.S. Lee. 2005. Characterization of a bacteriocin produced by Enterococcus faecium GM-1 isolated from an infant. J. Appl. Microbiol. 98, 1168-1176.
- Kleter, G.A. and H.J.P. Marvin. 2009. Indicators of emerging hazards and risks to food safety. Food Chem. Toxicol. 47, 1022-1039. https://doi.org/10.1016/j.fct.2008.07.028
- Ku, J.Y., S.J. Choi, S.Y. Kim, and B.S. Noh. 2000. Inactivation of ascorbate oxidase by hurdle technology with heat, pH and ultrasound. Food Sci. Biotechnol. 9, 372-377.
- Lazdunski, C.J. 1988. Pore-forming colicins: synthesis, extracellular release, mode of action, immunity. Biochimie 70, 1291-1296. https://doi.org/10.1016/0300-9084(88)90197-6
- Lee, N.K., J.Y. Lee, H.G. Kwak, and H.D. Paik. 2008. Perspectives for the industrial use of bacteriocin in dairy and meat industry. Kor. J. Food Sci. Ani. Resour. 28, 1-8. https://doi.org/10.5851/kosfa.2008.28.1.1
- Leistner, L. 2000. Basic aspects of food preservation by hurdle technology. Int. J. Food Microbiol. 55, 181-186. https://doi.org/10.1016/S0168-1605(00)00161-6
- Lim, S.M. 2005. Synergistic effect of physico-chemical treatment and bacteriocin produced by Enterococcus faecium MJ-14. J. Food Hyg. Safety 20, 217-224.
- Lim, S.M. 2009. Combined effects of bacteriocin of Enterococcus faecalis MJ-213 and organic acid on Listeria monocytogenes inactivation. Kor. J. Microbiol. 45, 41-47.
- Lim, K. and A. Mustapha. 2004. Effects of cetylpyridinium chloride, acidified sodium chlorite, and potassium sorbate on populations of Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus on fresh beef. J. Food Prot. 67, 310-315. https://doi.org/10.4315/0362-028X-67.2.310
- Lucas, R., M.J. Grande, H. Abriouel, M. Maqueda, N.B. Omar, E. Valdivia, M. Martinez-Canamero, and A. Galvez. 2006. Application of the broad-spectrum bacteriocin enterocin AS-48 to inhibit Bacillus coagulans in canned fruit and vegetable foods. Food Chem. Toxicol. 44, 1774-1781. https://doi.org/10.1016/j.fct.2006.05.019
- Martinez-Bueno, M., A. Galvez, E. Valdivia, and M. Maqueda. 1990. A transferable plasmid associated with AS-48 production in Enteococcus faecalis. J. Bacteriol. 172, 2817-2818. https://doi.org/10.1128/jb.172.5.2817-2818.1990
- McCabe-Sellers, B.J. and S.E. Beattle. 2004. Food safety: emerging trends in foodborne illness surveillance and prevention. J. Am. Diet Assoc. 104, 1708-1717. https://doi.org/10.1016/j.jada.2004.08.028
- Mead, P.S., L. Slutsker, V. Dietz, L.F. McCaig, J.S. Bresee, and C. Shapiro. 1999. Food-related illness and death in the United States. Emerg. Infect. Dis. 5, 607-625. https://doi.org/10.3201/eid0505.990502
- Meng, J. and M.P. Doyle. 2002. Introduction. Microbiological food safety. Microb. Infect. 4, 395-397. https://doi.org/10.1016/S1286-4579(02)01552-6
- Molinos, A.C., H. Abriouel, R.L. Lopez, N.B. Omar, E. Valdivia, and A. Galvez. 2009. Enhanced bactericidial activity of enterocin AS-48 in combination with essential oils, natural bioactive compounds and chemical preservatives against Listeria monocytogenes in ready-to-eat salad. Food Chem. Toxicol. 47, 2216-2223. https://doi.org/10.1016/j.fct.2009.06.012
- Moon, G.S., J.J. Jeong, G.E. Ji, J.S. Kim, and J.H. Kim. 2000. Chacracterization of a bacteriocin produced by Enterococcus sp. T7 isolated from humans. J. Microbiol. Biotechnol. 10, 507-513.
- Munoz, A., S. Ananou, A. Galvez, M. Martinez-Bueno, A. Rodriguez, M. Maqueda, and E. Valdivia. 2007. Inhibition of Staphylococcus aureus in dairy products by enterocin AS-48 produced in situ and ex situ: Bactericidal synerigism with heat. Int. Dairy J. 17, 760-769. https://doi.org/10.1016/j.idairyj.2006.09.006
- Papastathopoulou, A., E. Bezirtzoglou, and N.J. Legakis. 1997. Bacterioides fragilis: production and sensitivity to bacteriocins. Anaerobe 3, 203-206. https://doi.org/10.1006/anae.1997.0106
- Park, S.H., K. Itoh, and T. Fujisawa. 2003. Characteristics and identification of enterocins produced by Enterococcus faecium JCM 5804. J. Appl. Microbiol. 95, 294-300. https://doi.org/10.1046/j.1365-2672.2003.01975.x
- Piper, C., L.A. Draper, P.D. Cotter, R.P. Ross, and C. Hill. 2009. A comparison of the activities of lacticin 3147 and nisin against drug-resistant Staphylococcus aureus and Enterococcus species. J. Antimicrob. Chemother. 64, 546-551. https://doi.org/10.1093/jac/dkp221
-
Samelis, J., G.K. Bedie, J.N. Sofos, K.E. Belk, J.A. Scanga, and G.C. Smith. 2005. Combinations of nisin with organic acids or salts to control Listeria monocytogenes on sliced pork bologna stored at
$4{^{\circ}C}$ in vacuum packages. Lebensm. Wiss. Technol. 38, 21-28. https://doi.org/10.1016/j.lwt.2004.04.012 - Theppangna, W., T. Murase, N. Tokumaru, H. Chikumi, E. Shimizu, and K. Otsuki. 2007. Screening of the enterocin genes and antimicrobial activity against pathogenic bacteria in Enterococcus strains obtained from different origins. J. Vet. Med. Sci. 69, 1235-1239. https://doi.org/10.1292/jvms.69.1235
- Valenzuela, A.S., N. Omar, H. Abriouel, R.L. Lopez, K. Veljovic, M.M. Canamero, M.K.L. Topisirovic, and A. Galvez. 2009. Virulence factors, antibiotic resistance, and bacteriocins in enterococci from artisan foods of animal origin. Food Control 20, 381-385. https://doi.org/10.1016/j.foodcont.2008.06.004
- Van der Merwe, I.R., R. Bauer, T.J. Britz, and L.M.T. Dicks. 2004. Characterization of thoeniicin 447, a bacteriocin isolated from Propionibacterium thoenii strain 447. Int. J. Food Microbiol. 92, 153-160. https://doi.org/10.1016/j.ijfoodmicro.2003.09.004
- Vanne, L., M. Karwoski, S. karppinen, and A.M. Sjoberg. 1996. HACCP-based food quality control and rapid detection methods for microorganisms. Food Control 7, 263-276. https://doi.org/10.1016/S0956-7135(96)00064-3
- Walker, R. 1990. Nitrates, nitrites and N-nitroso compounds: a review of the occurrence in food and diet and the toxicological implications. Food Addit. Contam. 7, 717-768. https://doi.org/10.1080/02652039009373938
- Yoon, M.Y., Y.J. Kim, and H.J. Hwang. 2008. Properties and safety aspects of Enterococcus faecium strains isolated from Chungkukjang, a fermenated soy product. LWT. 41, 925-933. https://doi.org/10.1016/j.lwt.2007.05.024
- Zapico, P., M. de Paz, M. Medina, and M. Nunez. 1999. The effect of homogenization of whole milk, skim milk and milk fat on nisin activity against Listeria innocua. Int. J. Food Microbiol. 46, 151-157. https://doi.org/10.1016/S0168-1605(98)00190-1