• 제목/요약/키워드: tolerant plants

검색결과 311건 처리시간 0.027초

Antioxidative Activities in Rice Leaves Exposed to Ozone

  • Lee, Su-Yeon;Sol Yun;Lim, Hyo-Jin;Sung, Jwa-Kyung;Hwang, Seon-Woong;Huh, Kwang-Woon;Kim, Tae-Wan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • 제49권2호
    • /
    • pp.110-115
    • /
    • 2004
  • Rice (Oryza sativa L.) plants were cultivated to examine changes in antioxidative defence mechanism induced by elevated ozone levels. Catalase activities in tolerant Jinpumbyeo and susceptible Chucheongbyeo under ozone fumigation were reduced at 5 hrs and 3 hrs after ozone fumigation, respectively. With the increased ozone supply, peroxidase activity in Jinpumbyeo was steadily enhanced whereas in Chucheongbyeo it was not changed. Four SOD-isozymes were detected by NBT staining of native-PAGE. Two isozymes of them were obviously induced by ozone supply, particularly in Jinpumbyeo. The continuous ozone fumigation increased remarkably putrescine levels in leaves whereas it did not affect the levels of spermidine and spermine. In this study, it was implied that ozone in cell inhibits strongly diamine oxidase and thus promotes ethylene biosynthesis which will cause the senescence in rice plants.

A simple model for selection and rapid advancement of transgenic progeny in sorghum

  • Visarada, K.B.R.S.;Saikishore, N.;Kuriakose, S.V.;Rani, V. Shobha;Royer, M.;Rao, S.V.;Seetharama, N.
    • Plant Biotechnology Reports
    • /
    • 제2권1호
    • /
    • pp.47-58
    • /
    • 2008
  • To select agronomically useful transgenic plants, a large number of transgenic events are initially produced, gene transfer confirmed, and advanced to obtain homozygous lines for testing in field trials. Direct in planta assays for identifying the transgene carriers in the segregating progeny are based on the activity of selectable marker gene and are easy, simple and inexpensive. For this purpose, expression of bar gene as measured by tolerance to damage by glufosinate ammonium, the active ingredient in the herbicide BASTA, was investigated. Dose damage curves were generated by leaf paint tests with BASTA on four genotypes of sorghum. Transgenic plants were characterized in terms of sensitivity to the concentration of glufosinate ammonium. In transgenics, symptoms of BASTA swab tests at different growth stages and PCR analysis for cry1B were carried out and correlated. Germination tests could not be employed for large scale evaluation of transgenic progeny because of mortality of tolerant seedlings after transplantation to soil. Based on the above findings, a simple, inexpensive, time-saving, two-step scheme for effective evaluation of transgenics and their progeny containing bar gene as selection marker using BASTA swab tests is described.

Selection of Salt-Tolerant Silage Rice Through in vitro Screening and Saltol QTL Analysis (기내 선발과 Saltol QTL 분석을 통한 내염성 증진 사료용 벼 선발)

  • Cho, Chuloh;Kim, Kyung Hwa;Ahn, Eok-Keun;Park, Hyangmi;Choi, Man-Soo;Chun, Jaebuhm;Seo, Mi-Suk;Jin, Mina;Kim, Dool-Yi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • 제65권3호
    • /
    • pp.214-221
    • /
    • 2020
  • Salinity is one of the major abiotic stressors that inhibits the growth, yield, and productivity of crop plants. Therefore, it is necessary to develop crops with increased salt tolerance for cultivation in saline soils such as is found in reclaimed land. The objective of this study was to develop a salt-tolerant silage rice line that grows on reclaimed land. In order to develop this salt-tolerant silage rice, we transferred Saltol, a major QTL associated with salt tolerance, from IR64-Saltol, a salt-tolerant indica variety, into Mogyang, a susceptible elite japonica variety. To determine the effect of salt stress, Mogyang and IR64-Saltol cultivars were grown on a medium containing various concentrations of NaCl in in vitro conditions. Shoot length was found to decrease with increasing salt concentrations, and root growth was almost arrested at NaCl concentrations over 50 mM in the Mogyang cultivar. Based on these preliminary results, we screened five salt-tolerant lines showing superior growth under salt stress conditions. Polymerase chain reaction and sequencing results showed that the introgression types of Saltol QTL were derived from the IR64-Saltol cultivar in almost all selected lines. Based on the observed growth and physiological characteristics, the new Saltol introgression lines showed higher salt tolerance compared to the Mogyang parental cultivar. The salt-tolerant lines identified in this study could be used as a genetic resource to improve rice salt tolerance.

Functional Screening for Cell Death Suppressors and Development of Multiple Stress-Tolerant Plants

  • Moon Hae-Jeong;Baek Dong-Won;Lee Ji-Young;Nam Jae-Sung;Yun Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • 제5권3호
    • /
    • pp.143-148
    • /
    • 2003
  • Bax, a mammalian pro-apoptotic member of the Bcl-2 family induces cell death when expressed in yeast. To investigate whether Bax expression can induce cell death in plant, we produced transgenic Arabidopsis plants that contained murine Bax cDNA under control of a glucocorticoid-inducible promoter. Transgenic plants treated with dexamethasone, a strong synthetic glucocorticoid, induced Bax accumulation and cell death, suggesting that some elements of cell death mechanism by Bax may be conserved among various organisms. Therefore, we developed novel yeast genetic system, and cloned several Plant Bax Inhibitors (PBIs). Here, we report the function of two PBIs in detail. PBI1 is ascorbate peroxidase (sAPX). Fluorescence method of dihydrorhodamine123 oxidation revealed that expression of Bax in yeast cells generated reactive oxygen species (ROS), and which was greatly reduced by co-expression with sAPX. These results suggest that sAPX inhibits the generation of ROS by Bax, which in turn suppresses Baxinduced cell death in yeast. PBI2 encodes nucleoside diphosphate kinase (NDPK). ROS stress strongly induces the expression of the NDPK2 gene in Arabidopsis thaliana (AtNDPK2). Transgenic plants overexpressing AtNDPK2 have lower levels of ROS than wildtype plants. Mutants lacking AtNDPK2 had higher levels of ROS than wildtype. $H_2O_2$ treatment induced the phosphorylation of two endogenous proteins whose molecular weights suggested they are AtMPK3 and AtMPK6. In the absence of $H_2O_2$ treatment, phosphorylation of these proteins was slightly elevated in plants overexpressing AtNDPK2 but markedly decreased in the AtNDPK2 deletion mutant. Yeast two-hybrid and in vitro protein pull-down assays revealed that AtNDPK2 specifically interacts with AtMPK3 and AtMPK6. Furthermore, AtNDPK2 also enhances the MSP phosphorylation activity of AtMPK3 in vitro. Finally, constitutive overexpression of AtNDPK2 in Arabidopsis plants conferred an enhanced tolerance to multiple environmental stresses that elicit ROS accumulation in situ. Thus, AtNDPK2 appears to playa novel regulatory role in $H_2O_2$-mediated MAPK signaling in plants.

Functional Screening for Cell Death Suppressors and Development of Multiple Stress-Tolerant Plants

  • Moon, Hae-Jeong;Baek, Dong-Won;Lee, Ji-Young;Nam, Jae-Sung;Yun, Dae-Jin
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 한국식물생명공학회 2003년도 식물바이오벤처 페스티발
    • /
    • pp.65-71
    • /
    • 2003
  • Bax, a mammalian pro-apoptotic member of the Bcl-2 family, induces cell death when expressed in yeast. To investigate whether Bax expression can induce cell death in plant, we produced transgenic Arabidopsis plants that contained murine Bax cDNA under control of a glucocorticoid-inducible promoter. Transgenic plants treated with dexamethasone, a strong synthetic glucocorticoid, induced Bax accumulation and cell death, suggesting that some elements of cell death mechanism by Bax may be conserved among various organisms. Therefore, we developed novel yeast genetic system, and cloned several Plant Bax Inhibitors (PBIs). Here, we report the function of two PBIs in detail. PBI1 is ascorbate peroxidase (sAPX). Fluorescence method of dihydrorho-damine 123 oxidation revealed that expression of Bax in yeast cells generated reactive oxygen species (ROS), and which was greatly reduced by co-expression with sAPX. These results suggest that sAPX inhibits the generation of ROS by Bax, which in turn suppresses Baxinduced cell death in yeast. PBI2 encodes nucleoside diphosphate kinase (NDPK). ROS stress strongly induces the expression of the NDPK2 gene in Arabidopsis thaliana (AtNDPK2). Transgenic plants overexpressing AtNDPK2 have lower levels of ROS than wildtype plants. Mutants lacking AtNDPK2 had higher levels of ROS than wildtype. $H_2O_2$ treatment induced the phosphorylation of two endogenous proteins whose molecular weights suggested they are AtMPK3 and AtMPK6. In the absence of $H_2O_2$ treatment, phosphorylation of these proteins was slightly elevated in plants overexpressing AtNDPK2 but markedly decreased in the AtNDPK2 deletion mutant. Yeast two-hybrid and in vitro protein pull-down assays revealed that AtNDPK2 specifically interacts with AtMPK3 and AtMPK6. Furthermore, AtNDPK2 also enhances the MBP phosphorylation activity of AtMPK3 in vitro. Finally, constitutive overexpression of AtNDPK2 in Arabidopsis plants conferred an enhanced tolerance to multiple environmental stresses that elicit ROS accumulation in situ. Thus, AtNDPK2 appears to play a novel regulatory role in $H_2O_2$-mediated MAPK signaling in plants.

  • PDF

Halotolerant Plant Growth Promoting Bacteria Mediated Salinity Stress Amelioration in Plants

  • Shin, Wansik;Siddikee, Md. Ashaduzzaman;Joe, Manoharan Melvin;Benson, Abitha;Kim, Kiyoon;Selvakumar, Gopal;Kang, Yeongyeong;Jeon, Seonyoung;Samaddar, Sandipan;Chatterjee, Poulami;Walitang, Denver;Chanratana, Mak;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제49권4호
    • /
    • pp.355-367
    • /
    • 2016
  • Soil salinization refers to the buildup of salts in soil to a level toxic to plants. The major factors that contribute to soil salinity are the quality, the amount and the type of irrigation water used. The presented review discusses the different sources and causes of soil salinity. The effect of soil salinity on biological processes of plants is also discussed in detail. This is followed by a debate on the influence of salt on the nutrient uptake and growth of plants. Salinity decreases the soil osmotic potential and hinders water uptake by the plants. Soil salinity affects the plants K uptake, which plays a critical role in plant metabolism due to the high concentration of soluble sodium ($Na^+$) ions. Visual symptoms that appear in the plants as a result of salinity include stunted plant growth, marginal leaf necrosis and fruit distortions. Different strategies to ameliorate salt stress globally include breeding of salt tolerant cultivars, irrigation to leach excessive salt to improve soil physical and chemical properties. As part of an ecofriendly means to alleviate salt stress and an increasing considerable attention on this area, the review then focuses on the different plant growth promoting bacteria (PGPB) mediated mechanisms with a special emphasis on ACC deaminase producing bacteria. The various strategies adopted by PGPB to alleviate various stresses in plants include the production of different osmolytes, stress related phytohormones and production of molecules related to stress signaling such as bacterial 1-aminocyclopropane-1-carboxylate (ACC) derivatives. The use of PGPB with ACC deaminase producing trait could be effective in promoting plant growth in agricultural areas affected by different stresses including salt stress. Finally, the review ends with a discussion on the various PGPB activities and the potentiality of facultative halophilic/halotolerant PGPB in alleviating salt stress.

Determination of Heat Killing Temperature of Orchardgrass(Dactylis glomerata L.) (오차드그라스 (Dactylis glomerata L.)의 치사온도 결정)

  • Kim, K.Y.;Kang, K.M.;Rim, Y.W.;Park, G.J.;Lim, Y.C.;Seo, S.;Son, D.Y.;Jo, J.K.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • 제24권1호
    • /
    • pp.25-28
    • /
    • 2004
  • To determine lethal temperature of orchardgrass (Dactylis glomerata L. cv. Janbeol 102) developed in Korea at heat-stressed conditions, seedlings grown in a amall pots for 4 weeks were treated at $45^{\circ}C$, $50^{\circ}C$ or $55^{\circ}C$ for 1 h. Heat treatments at $60^{\circ}C$ and $65^{\circ}C$ for 1 h, several plants were withered and showed damage symptom on their leaves. When the plants were exposed to $70^{\circ}C$ for 1 h, most of leaves were severely withered, but it was not lethal conditions for the whole plants. By contrast, most of plants were died within one day after heat treatment at $80^{\circ}C$ for 1h. Furthermore, plants exposed to $80^{\circ}C$ for 55 min were also died within 7 days. It was found that new shoots were regenerated from the plants that had been treated at $80^{\circ}C$ within 50 min. These results indicate that heat treatment at $80^{\circ}C$ for 55 min is an optimum condition to distinguish the lethality of orchardgrass plants. Simple viability assay system established in this study will be useful for selection and characterization of heat-tolerant transgenic orchardgrass plants.

Confirmation of Drought Tolerance of Ectopically Expressed AtABF3 Gene in Soybean

  • Kim, Hye Jeong;Cho, Hyun Suk;Pak, Jung Hun;Kwon, Tackmin;Lee, Jai-Heon;Kim, Doh-Hoon;Lee, Dong Hee;Kim, Chang-Gi;Chung, Young-Soo
    • Molecules and Cells
    • /
    • 제41권5호
    • /
    • pp.413-422
    • /
    • 2018
  • Soybean transgenic plants with ectopically expressed AtABF3 were produced by Agrobacterium-mediated transformation and investigated the effects of AtABF3 expression on drought and salt tolerance. Stable Agrobacterium-mediated soybean transformation was carried based on the half-seed method (Paz et al. 2006). The integration of the transgene was confirmed from the genomic DNA of transformed soybean plants using PCR and the copy number of transgene was determined by Southern blotting using leaf samples from $T_2$ seedlings. In addition to genomic integration, the expression of the transgenes was analyzed by RT-PCR and most of the transgenic lines expressed the transgenes introduced. The chosen two transgenic lines (line #2 and #9) for further experiment showed the substantial drought stress tolerance by surviving even at the end of the 20-day of drought treatment. And the positive relationship between the levels of AtABF3 gene expression and drought-tolerance was confirmed by qRT-PCR and drought tolerance test. The stronger drought tolerance of transgenic lines seemed to be resulted from physiological changes. Transgenic lines #2 and #9 showed ion leakage at a significantly lower level (P < 0.01) than ${\underline{n}}on-{\underline{t}}ransgenic$ (NT) control. In addition, the chlorophyll contents of the leaves of transgenic lines were significantly higher (P < 0.01). The results indicated that their enhanced drought tolerance was due to the prevention of cell membrane damage and maintenance of chlorophyll content. Water loss by transpiration also slowly proceeded in transgenic plants. In microscopic observation, higher stomata closure was confirmed in transgenic lines. Especially, line #9 had 56% of completely closed stomata whereas only 16% were completely open. In subsequent salt tolerance test, the apparently enhanced salt tolerance of transgenic lines was measured in ion leakage rate and chlorophyll contents. Finally, the agronomic characteristics of ectopically expressed AtABF3 transgenic plants ($T_2$) compared to NT plants under regular watering (every 4 days) or low rate of watering condition (every 10 days) was investigated. When watered regularly, the plant height of drought-tolerant line (#9) was shorter than NT plants. However, under the drought condition, total seed weight of line #9 was significantly higher than in NT plants (P < 0.01). Moreover, the pods of NT plants showed severe withering, and most of the pods failed to set normal seeds. All the evidences in the study clearly suggested that overexpression of the AtABF3 gene conferred drought and salt tolerance in major crop soybean, especially under the growth condition of low watering.

Salt Tolerance of Various Native Plants under Salt Stress (여러 자생식물의 내염성 정도 구명)

  • Shim, Myung Syun;Kim, Young Jae;Lee, Chung Hee;Shin, Chang Ho
    • Journal of Bio-Environment Control
    • /
    • 제21권4호
    • /
    • pp.478-484
    • /
    • 2012
  • This study was carried out to investigate the plant growth and ion absorbance balance of various native plants affected by the NaCl concentration (0, 100, 200, 300 mM). Carex blepharicarpa, Carex lenta, Carex matsumarae, Carex sendaica, Iris pseudacorus L., Sedum oryzifolium Makino, Sedum polytrichoides Hemsl., and Typha angustifolia L. were used in this experiment. Carex blepharicarpa, Carex lenta, Carex matsumarae, and Iris pseudacorus L. were tolerant of salinity at the NaCl concentration of 200 mM. The root growth of Carex sendaica and Typha angustifolia L. was suppressed at the NaCl concentration of 100 mM, expecially the root growth responded more sensitively than the upper growth to salinity. The K absorbance of Carex sendaica decreased according to the NaCl application, and the Na/K rate value was 3 at the NaCl concentration of 300 mM. The K, Ca, and Mg absorbance of Typha angustifolia L. decreased at the NaCl concentration of 200~300 mM, and the Na/K rate value was 0.8 at the NaCl concentration of 300 mM. The plant growth of Sedum oryzifolium Makino and Sedum polytrichoides Hemsl. was suppressed at the NaCl concentration of 100~200 mM. The K, Ca, and Mg absorbance of Sedum oryzifolium Makino decreased at the NaCl concentration of 200~300 mM, and Sedum polytrichoides Hemsl. was unaffected by the NaCl application. The Na/K value was 1 in both plants. Therefore, Carex blepharicarpa, Carex lenta, Carex matsumarae, and Iris pseudacorus L. were tolerant plants of salinity at the NaCl concentration of 200 mM considering the plant growth and ion absorbance balance. Especially, the Carex plants were expected to expanding use by the proven tolerance of salinity. The root growth of Carex sendaica, Sedum oryzifolium Makino, Sedum polytrichoides Hemsl., and Typha angustifolia L., was suppressed at the NaCl concentration of 100 mM, but there was no distinct tendency of ion absorbance in leaves according to the NaCl application.

Understanding of Drought Stress Signaling Network in Plants (식물의 물부족 스트레스 신호 전달 네트워크에 대한 이해)

  • Lee, Jae-Hoon
    • Journal of Life Science
    • /
    • 제28권3호
    • /
    • pp.376-387
    • /
    • 2018
  • Among a variety of environmental stresses heat, cold, chilling, high salt, drought, and so on exposed to plants, drought stress has been reported as a crucial factor to adversely affect the growth and productivity of plants. Therefore, to understand the mechanism for the drought stress signal transduction pathway in plants is more helpful to develop useful crops that display the enhanced tolerance against drought stress, and to expand crop growing areas. The signal transduction pathway for the drought stress in plants is largely categorized into two types; ABA-dependent pathway and ABA-independent pathway. It has been reported that two transcription factors, AREB/ABF and DREB2, play predominant roles in ABA-dependent and ABA-independent pathways, respectively. In addition to transcriptional regulation mediated by AREB/ABF and DREB2 transcription factors, post-translational modification (such as phosphorylation and ubiquitination) and epigenetic control are importantly involved in the signal transduction for drought stress. In this paper, we review current understanding of signal transduction pathway on drought stress in plants, especially focusing on the biological roles of a variety of signaling components related to drought stress response. Further understanding the mechanism of drought resistance in plants through this review will be useful to establish theoretical basis for developing drought tolerant crops in the future.