DOI QR코드

DOI QR Code

Understanding of Drought Stress Signaling Network in Plants

식물의 물부족 스트레스 신호 전달 네트워크에 대한 이해

  • Lee, Jae-Hoon (Department of Biology Education, Pusan National University)
  • Received : 2018.01.29
  • Accepted : 2018.03.27
  • Published : 2018.03.30

Abstract

Among a variety of environmental stresses heat, cold, chilling, high salt, drought, and so on exposed to plants, drought stress has been reported as a crucial factor to adversely affect the growth and productivity of plants. Therefore, to understand the mechanism for the drought stress signal transduction pathway in plants is more helpful to develop useful crops that display the enhanced tolerance against drought stress, and to expand crop growing areas. The signal transduction pathway for the drought stress in plants is largely categorized into two types; ABA-dependent pathway and ABA-independent pathway. It has been reported that two transcription factors, AREB/ABF and DREB2, play predominant roles in ABA-dependent and ABA-independent pathways, respectively. In addition to transcriptional regulation mediated by AREB/ABF and DREB2 transcription factors, post-translational modification (such as phosphorylation and ubiquitination) and epigenetic control are importantly involved in the signal transduction for drought stress. In this paper, we review current understanding of signal transduction pathway on drought stress in plants, especially focusing on the biological roles of a variety of signaling components related to drought stress response. Further understanding the mechanism of drought resistance in plants through this review will be useful to establish theoretical basis for developing drought tolerant crops in the future.

식물이 접하는 다양한 환경 스트레스(고온, 저온, 냉해, 고염, 가뭄 등) 중에서 물부족(가뭄) 스트레스는 식물의 생장 및 생산성을 저해하는 가장 주요한 요인으로 보고되어 왔다. 그러므로, 물부족 스트레스에 대한 식물의 반응 기작을 명확히 이해하는 것은 물부족 스트레스 저항성이 증가된 유용 작물 개발에 적용될 수 있을 것으로 기대되며, 그 결과 작물 재배 가능 지역의 확대에 기여할 수 있을 것으로 생각된다. 식물의 물부족 스트레스 신호 과정은 크게 식물 호르몬인 앱시스산 의존적인 과정과 비의존적인 과정으로 분류되며, 각각 AREB/ABF, DREB2 전사 조절 인자가 주요한 전사 조절 인자로 참여하여 하위 단계 반응 유전자의 발현 조절에 참여한다. 이러한 AREB/ABF, DREB2 의존적인 regulon에 대한 연구를 통해 물부족 스트레스 신호 과정 중 전사 수준의 조절에 대한 규명이 활발히 이루어지고 있다. 해당 신호 과정에는 전사 수준의 조절뿐만 아니라 인산화, 유비퀴틴화와 같은 번역 후 변형 과정 및 염색질 변형에 의해 매개되는 후성유전학적 조절도 연관되어 있다. 본 총설에서는 현재까지 보고된 물부족 스트레스 신호 전달 과정을, 이와 관련되어 보고된 다양한 신호 전달 단백질들의 기능과 연계시켜 알아보고자 한다. 이러한 물부족 스트레스 신호 전달 과정에 대한 명확한 이해는 향후 유용 내건성 작물 개발을 위한 이론적 기반 구축에 도움이 될 수 있을 것이라 생각된다.

Keywords

References

  1. Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K. and Yamaguchi- Shinozaki, K. 2003. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15, 63-78. https://doi.org/10.1105/tpc.006130
  2. Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., Hosokawa, D. and Shinozaki, K. 1997. Role of Arabidopsis MYC and MYB homologs in drought- and abscisic-acidregulated gene expression. Plant Cell 9, 1859-1868.
  3. Acharya, B. R., Jeon, B. W., Zhang, W. and Assmann, S. M. 2013. Open Stomata 1 (OST1) is limiting in abscisic acid responses of Arabidopsis guard cells. New Phytol. 200, 1049-1063. https://doi.org/10.1111/nph.12469
  4. Adler, G., Konrad, Z., Zamir, L., Mishra, A. K., Raveh, D. and Bar-Zvi, D. 2017. The Arabidopsis paralogs, PUB46 and PUB48, encoding U-box E3 ubiquitin ligases, are essential for plant response to drought stress. BMC Plant Biol. 17, 8. https://doi.org/10.1186/s12870-016-0963-5
  5. Agarwal, P., Agarwal, P. K., Nair, S., Sopory, S. K. and Reddy, M. K. 2007. Stress-inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA-binding activity. Mol. Genet. Genomics 277, 189-198. https://doi.org/10.1007/s00438-006-0183-z
  6. Agarwal, P. K., Agarwal, P., Reddy, M. K. and Sopory, S. K. 2006. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 25, 1263-1274.
  7. Boyer, J. S. 1982. Plant productivity and environment. Science 218, 443-448. https://doi.org/10.1126/science.218.4571.443
  8. Brandt, B., Brodsky, D. E., Xue, S., Negi, J., Iba, K., Kangasjarvi, J., Ghassemian, M., Stephan, A. B., Hu, H. and Schroeder, J. I. 2012. Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. Proc. Natl. Acad. Sci. USA. 109, 10593-10598. https://doi.org/10.1073/pnas.1116590109
  9. Chen, H., Lai, Z., Shi, J., Xiao, Y., Chen, Z. and Xu, X. 2010. Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biol. 10, 281. https://doi.org/10.1186/1471-2229-10-281
  10. Chen, Y. T., Liu, H., Stone, S. and Callis, J. 2013. ABA and the ubiquitin E3 ligase KEEP ON GOING affect proteolysis of the Arabidopsis thaliana transcription factors ABF1 and ABF3. Plant J. 75, 965-976. https://doi.org/10.1111/tpj.12259
  11. Cheng, M. C., Hsieh, E. J., Chen, J. H., Chen, H. Y. and Lin, T. P. 2012. Arabidopsis RGLG2, functioning as a RING E3 ligase, interacts with AtERF53 and negatively regulates the plant drought stress response. Plant Physiol. 158, 363-375.
  12. Cho, S. K., Bae, H., Ryu, M. Y., Yang, S. W. and Kim, W. T. 2015. PUB22 and PUB23 U-BOX E3 ligases directly ubiquitinate RPN6, a 26S proteasome lid subunit, for subsequent degradation in Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 464, 994-999. https://doi.org/10.1016/j.bbrc.2015.07.030
  13. Cho, S. K., Ryu, M. Y., Seo, D. H., Kang, B. G. and Kim, W. T. 2011. The Arabidopsis RING E3 ubiquitin ligase AtAIRP2 plays combinatory roles with AtAIRP1 in abscisic acid-mediated drought stress responses. Plant Physiol. 157, 2240-2257. https://doi.org/10.1104/pp.111.185595
  14. Cho, S. K., Ryu, M. Y., Song, C., Kwak, J. M. and Kim, W. T. 2008. Arabidopsis PUB22 and PUB23 are homologous U-Box E3 ubiquitin ligases that play combinatory roles in response to drought stress. Plant Cell 20, 1899-1914.
  15. Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R. and Abrams, S. R. 2010. Abscisic acid: emergence of a core signaling network. Annu. Rev. Plant Biol. 61, 651-679. https://doi.org/10.1146/annurev-arplant-042809-112122
  16. Dai, A. 2012. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 3, 52-58.
  17. Ding, S., Zhang, B. and Qin, F. 2015. Arabidopsis RZFP34/ CHYR1, a ubiquitin E3 ligase, regulates stomatal movement and drought tolerance via SnRK2.6-mediated phosphorylation. Plant Cell 27, 3228-3244. https://doi.org/10.1105/tpc.15.00321
  18. Ding, Y., Avramova, Z. and Fromm, M. 2011. The Arabidopsis trithorax-like factor ATX1 functions in dehydration stress responses via ABA-dependent and ABA-independent pathways. Plant J. 66, 735-744.
  19. Ding, Y., Fromm, M. and Avramova, Z. 2012. Multiple exposures to drought 'train' transcriptional responses in Arabidopsis. Nat. Commun. 3, 740. https://doi.org/10.1038/ncomms1732
  20. Fang, H., Liu, X., Thorn, G., Duan, J. and Tian, L. 2014. Expression analysis of histone acetyltransferases in rice under drought stress. Biochem. Biophys. Res. Commun. 443, 400-405. https://doi.org/10.1016/j.bbrc.2013.11.102
  21. Fujita, Y., Nakashima, K., Yoshida, T., Katagiri, T., Kidokoro, S., Kanamori, N., Umezawa, T., Fujita, M., Maruyama, K., Ishiyama, K., Kobayashi, M., Nakasone, S., Yamada, K., Ito, T., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2009. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol. 50, 2123-2132. https://doi.org/10.1093/pcp/pcp147
  22. Fujita, Y., Yoshida, T. and Yamaguchi-Shinozaki, K. 2013. Pivotal role of the AREB/ABF-SnRK2 pathway in ABREmediated transcription in response to osmotic stress in plants. Physiol. Plant. 147, 15-27. https://doi.org/10.1111/j.1399-3054.2012.01635.x
  23. Gao, W., Liu, W., Zhao, M. and Li, W. X. 2015. NERF encodes a RING E3 ligase important for drought resistance and enhances the expression of its antisense gene NFYA5 in Arabidopsis. Nucleic Acids Res. 43, 607-617. https://doi.org/10.1093/nar/gku1325
  24. Golldack, D., Li, C., Mohan, H. and Probst, N. 2014. Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Front. Plant Sci. 5, 151.
  25. Guo, J., Yang, X., Weston, D. J. and Chen, J. G. 2011. Abscisic acid receptors: past, present and future. J. Integr. Plant Biol. 53, 469-479. https://doi.org/10.1111/j.1744-7909.2011.01044.x
  26. Haake,V., Cook, D., Riechmann, J. L., Pineda, O., Thomashow, M. F. and Zhang, J. Z. 2002. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol. 130, 639-648. https://doi.org/10.1104/pp.006478
  27. Han, S. K., Sang, Y., Rodrigues, A. Wu, M. F., Rodriguez, P. L. and Wagner, D. 2012. The SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses abscisic acid responses in the absence of the stress stimulus in Arabidopsis. Plant Cell 24, 4892-4906.
  28. Hershko, A. and Ciechanover, A. 1998. The ubiquitin system. Annu. Rev. Biochem. 67, 425-479. https://doi.org/10.1146/annurev.biochem.67.1.425
  29. Hsieh, E. J., Cheng, M. C. and Lin, T. P. 2013. Functional characterization of an abiotic stress-inducible transcription factor AtERF53 in Arabidopsis thaliana. Plant Mol. Biol. 82, 223-237. https://doi.org/10.1007/s11103-013-0054-z
  30. Hua, D., Wang, C., He, J., Liao, H., Duan, Y., Zhu, Z., Guo, Y., Chen, Z. and Gong, Z. 2012. A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis. Plant Cell 24, 2546-2561. https://doi.org/10.1105/tpc.112.100107
  31. Im, J. H., Cho, Y. H., Kim, G. D., Kang, G. H., Hong, J. W. and Yoo, S. D. 2014. Inverse modulation of the energy sensor Snf1-related protein kinase 1 on hypoxia adaptation and salt stress tolerance in Arabidopsis thaliana. Plant Cell Environ. 37, 2303-2312.
  32. Joo, J., Choi, H. J., Lee, Y. H., Kim, Y. K. and Song, S. I. 2013. A transcriptional repressor of the ERF family confers drought tolerance to rice and regulates genes preferentially located on chromosome 11. Planta 238, 155-170.
  33. Joshi, R., Wani, S. H., Singh, B., Bohra, A., Dar, Z. A., Lone, A. A., Pareek, A. and Singla-Pareek, S. L. 2016. Transcription factors and plants response to drought stress: current understanding and future directions. Front. Plant Sci. 7, 1029.
  34. Kim, J. H. and Kim, W. T. 2013. The Arabidopsis RING E3 ubiquitin ligase AtAIRP3/LOG2 participates in positive regulation of high-salt and drought stress responses. Plant Physiol. 162, 1733-1749. https://doi.org/10.1104/pp.113.220103
  35. Kim, J. M., To, T. K., Ishida, J., Matsui, A., Kimura, H. and Seki, M. 2012. Transition of chromatin status during the process of recovery from drought stress in Arabidopsis thaliana. Plant Cell Physiol. 53, 847-856. https://doi.org/10.1093/pcp/pcs053
  36. Kim, J. M., To, T. K., Ishida, J., Morosawa, T., Kawashima, M., Matsui, A., Toyoda, T., Kimura, H., Shinozaki, K. and Seki, M. 2008. Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana. Plant Cell Physiol. 49, 1580-1588. https://doi.org/10.1093/pcp/pcn133
  37. Kim, J. S., Mizoi, J., Kidokoro, S., Maruyama, K., Nakajima, J., Nakashima, K., Mitsuda, N., Takiguchi, Y., Ohme-Takagi, M., Kondou, Y., Yoshizumi, T., Matsui, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2012. Arabidopsis growth-regulating factor7 functions as a transcriptional repressor of abscisic acid- and osmotic stress-responsive genes, including DREB2A. Plant Cell 24, 3393-3405. https://doi.org/10.1105/tpc.112.100933
  38. Kim, S. J. and Kim, W. T. 2013. Suppression of Arabidopsis RING E3 ubiquitin ligase AtATL78 increases tolerance to cold stress and decreases tolerance to drought stress. FEBS Lett. 587, 2584-2590. https://doi.org/10.1016/j.febslet.2013.06.038
  39. Lee, J. H., Terzaghi, W., Gusmaroli, G., Charron, J. B., Yoon, H. J., Chen, H., He, Y. J., Xiong, Y. and Deng, X. W. 2008. Characterization of Arabidopsis and rice DWD proteins and their roles as substrate receptors for CUL4-RING E3 ubiquitin ligases. Plant Cell 20, 152-167. https://doi.org/10.1105/tpc.107.055418
  40. Lee, J. H., Yoon, H. J., Terzaghi, W., Martinez, C., Dai, M., Li, J., Byun, M. O. and Deng, X. W. 2010. DWA1 and DWA2, two Arabidopsis DWD protein components of CUL4-based E3 ligases, act together as negative regulators in ABA signal transduction. Plant Cell 22, 1716-1732. https://doi.org/10.1105/tpc.109.073783
  41. Li, H., Jiang, H., Bu, Q., Zhao, Q., Sun, J., Xie, Q. and Li, C. 2011. The Arabidopsis RING finger E3 ligase RHA2b acts additively with RHA2a in regulating abscisic acid signaling and drought response. Plant Physiol. 156, 550-563. https://doi.org/10.1104/pp.111.176214
  42. Li, W. X., Oono, Y., Zhu, J., He, X. J., Wu, J. M., Iida, K., Lu, X. Y., Cui, X., Jin, H. and Zhu, J. K. 2008. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20, 2238-2251. https://doi.org/10.1105/tpc.108.059444
  43. Li, Y., Zhang, L., Li, D., Liu, Z., Wang, J., Li, X. and Yang, Y. 2016. The Arabidopsis F-box E3 ligase RIFP1 plays a negative role in abscisic acid signalling by facilitating ABA receptor RCAR3 degradation. Plant Cell Environ. 39, 571-582.
  44. Liu, Y. C., Wu, Y. R., Huang, X. H., Sun, J. and Xie, Q. 2011. AtPUB19, a U-box E3 ubiquitin ligase, negatively regulates abscisic acid and drought responses in Arabidopsis thaliana. Mol. Plant 4, 938-946. https://doi.org/10.1093/mp/ssr030
  45. Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A. and Grill, E. 2009. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 1064-1068.
  46. Meyer, K., Leube, M. P. and Grill, E. 1994. A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science 264, 1452-1455. https://doi.org/10.1126/science.8197457
  47. Mizuno, T. and Yamashino, T. 2008. Comparative transcriptome of diurnally oscillating genes and hormone-responsive genes in Arabidopsis thaliana: Insight into circadian clock-controlled daily responses to common ambient stresses in plants. Plant Cell Physiol. 49, 481-487. https://doi.org/10.1093/pcp/pcn008
  48. Nakashima, K., Ito,Y. and Yamaguchi-Shinozaki, K. 2009. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol. 149, 88-95. https://doi.org/10.1104/pp.108.129791
  49. Nemhauser, J. L., Hong, F. and Chory, J. 2006. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126, 467-475. https://doi.org/10.1016/j.cell.2006.05.050
  50. Pandey, G., Sharma, N., Sahu, P. P. and Prasad, M. 2016. Chromatin-based epigenetic regulation of plant abiotic stress response. Curr. Genomics 17, 490-498. https://doi.org/10.2174/1389202917666160520103914
  51. Park, S. Y., Fung, P., Nishimura, N., Jensen, D. R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A., Chow, T. F., Alfred, S. E., Bonetta, D., Finkelstein, R., Provart, N. J., Desveaux, D., Rodriguez, P. L., McCourt, P., Zhu, J. K., Schroeder, J. I., Volkman, B. F. and Cutler, S. R. 2009. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068-1071.
  52. Peirats-Llobet, M., Han, S. K., Gonzalez-Guzman, M., Jeong, C. W., Rodriguez, L., Belda-Palazon, B., Wagner, D. and Rodriguez, P. L. 2016. A direct link between abscisic acid sensing and the chromatin-remodeling ATPase BRAHMA via core ABA signaling pathway components. Mol. Plant 9, 136-147. https://doi.org/10.1016/j.molp.2015.10.003
  53. Puranik, S., Sahu, P. P., Srivastava, P. S. and Prasad, M. 2012. NAC proteins: regulation and role in stress tolerance. Trends Plant Sci. 17, 369-381. https://doi.org/10.1016/j.tplants.2012.02.004
  54. Qin, F., Sakuma, Y., Tran, L. S., Maruyama, K., Kidokoro, S., Fujita, Y., Fujita, M., Umezawa, T., Sawano, Y., Miyazono, K., Tanokura, M., Shinozaki, K. and Yamaguchi- Shinozaki, K. 2008. Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell 20, 1693-1707. https://doi.org/10.1105/tpc.107.057380
  55. Rahdari, P. and Hoseini, S. M. 2012. Drought stress, a review. Int. J. Agron. Plant Prod. 3, 443-446.
  56. Ren, X., Chen, Z., Liu, Y., Zhang, H., Zhang, M., Liu, Q., Hong, X., Zhu, J. K and Gong, Z. 2010. ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J. 63, 417-429. https://doi.org/10.1111/j.1365-313X.2010.04248.x
  57. Ryu, M. Y., Cho, S. K. and Kim, W. T. 2010. The Arabidopsis C3H2C3-type RING E3 ubiquitin ligase AtAIRP1 is a positive regulator of an abscisic acid-dependent response to drought stress. Plant Physiol. 154, 1983-1997.
  58. Sahoo, K. K., Tripathi, A. K., Pareek, A. and Singla-Pareek, S. L. 2013. Taming drought stress in rice through genetic engineering of transcription factors and protein kinases. Plant Stress 7, 60-72.
  59. Sato, A., Sato, Y., Fukao, Y., Fujiwara, M., Umezawa, T., Shinozaki, K., Hibi, T., Taniguchi, M., Miyake, H., Goto, D. B. and Uozumi, N. 2009. Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochem. J. 424, 439-448. https://doi.org/10.1042/BJ20091221
  60. Sakuma, Y., Liu, Q., Dubouzet, J. G., Abe, H., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2002. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem. Biophys. Res. Commun. 290, 998-1009.
  61. Sakuma, Y., Maruyama, K., Qin, F., Osakabe, Y., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2006. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc. Natl. Acad. Sci. USA. 103, 18822-18827. https://doi.org/10.1073/pnas.0605639103
  62. Seo, D. H., Ryu, M. Y., Jammes, F., Hwang, J. H., Turek, M., Kang, B. G., Kwak, J. M. and Kim, W. T. 2012. Roles of four Arabidopsis U-box E3 ubiquitin ligases in negative regulation of abscisic acid-mediated drought stress responses. Plant Physiol. 160, 556-568. https://doi.org/10.1104/pp.112.202143
  63. Seo, K. I., Lee, J. H., Nezames, C. D., Zhong, S., Song, E., Byun, M. O. and Deng, X. W. 2014. ABD1 is an Arabidopsis DCAF substrate receptor for CUL4-DDB1-based E3 ligases that acts as a negative regulator of abscisic acid signaling. Plant Cell 26, 695-711.
  64. Shang, Y., Yan, L., Liu, Z. Q., Cao, Z., Mei, C., Xin, Q., Wu, F. Q., Wang, X. F., Du, S. Y., Jiang, T., Zhang, X. F., Zhao, R., Sun, H. L., Liu, R., Yu, Y. T. and Zhang, D. P. 2010. The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition. Plant Cell 22, 1909-1935. https://doi.org/10.1105/tpc.110.073874
  65. Shao, H., Wang, H. and Tang, X. 2015. NAC transcription factors in plant multiple abiotic stress responses: progress and prospects. Front. Plant Sci. 6, 902.
  66. Singh, D. and Laxmi, A. 2015. Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Front. Plant Sci. 6, 895.
  67. Sirichandra, C., Gu, D., Hu, H. C., Davanture, M., Lee, S., Djaoui, M., Valot, B., Zivy, M., Leung, J., Merlot, S. and Kwak, J. M. 2009. Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Lett. 583, 2982-2986. https://doi.org/10.1016/j.febslet.2009.08.033
  68. Song, S. Y., Chen, Y., Chen, J., Dai, X. Y. and Zhang, W. H. 2011. Physiological mechanisms underlying OsNAC5- dependent tolerance of rice plants to abiotic stress. Planta 234, 331-345. https://doi.org/10.1007/s00425-011-1403-2
  69. Stone, S. L., Williams, L. A., Farmer, L. M., Vierstra, R. D. and Callis, J. 2006. KEEP ON GOING, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. Plant Cell 18, 3415-3428. https://doi.org/10.1105/tpc.106.046532
  70. Tang, N., Zhang, H., Li, X., Xiao, J. and Xiong, L. 2012. Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. Plant Physiol. 158, 1755-1768. https://doi.org/10.1104/pp.111.190389
  71. Todaka, D., Nakashima, K., Shinozaki, K. and Yamaguchi- Shinozaki, K. 2012. Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice. Rice 5, 6. https://doi.org/10.1186/1939-8433-5-6
  72. Todaka, D., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2015. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front. Plant Sci. 6, 84.
  73. Tran, L. S., Nakashima, K., Sakuma, Y., Simpson, S. D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2004. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16, 2481-2498. https://doi.org/10.1105/tpc.104.022699
  74. Tsuzuki, T., Takahashi, K., Tomiyama, M., Inoue, S. and Kinoshita, T. 2013. Overexpression of the Mg-chelatase H subunit in guard cells confers drought tolerance via promotion of stomatal closure in Arabidopsis thaliana. Front. Plant Sci. 4, 440.
  75. Umezawa, T., Nakashima, K., Miyakawa, T., Kuromori, T., Tanokura, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2010. Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol. 51, 1821-1839. https://doi.org/10.1093/pcp/pcq156
  76. Umezawa, T., Sugiyama, N., Mizoguchi, M., Hayashi, S., Myouga, F., Yamaguchi-Shinozaki, K., Ishihama, Y., Hirayama, T. and Shinozaki, K. 2009. Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc. Natl. Acad. Sci. USA. 106, 17588-17593. https://doi.org/10.1073/pnas.0907095106
  77. Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2000. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid dependent signal transduction pathway under drought and high-salinity. Proc. Natl. Acad. Sci. USA. 97, 11632-11637. https://doi.org/10.1073/pnas.190309197
  78. Vahisalu, T., Kollist, H., Wang, Y. F., Nishimura, N., Chan, W. Y., Valerio, G., Lamminmaki, A., Brosche, M., Moldau, H., Desikan, R., Schroeder, J. I. and Kangasjarvi, J. 2008. SLAC1 is required for plant guard cells S-type anion channel function in stomatal signalling. Nature 452, 487-491.
  79. Vierstra, R. D. 2009. The ubiquitin-26S proteasome system at the nexus of plant biology. Nat. Rev. Mol. Cell Biol. 10, 385-397. https://doi.org/10.1038/nrm2688
  80. Vurukonda, S. S., Vardharajula, S., Shrivastava, M. and SkZ, A. 2016. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 184, 13-24. https://doi.org/10.1016/j.micres.2015.12.003
  81. Wiborg, J., O'Shea, C. and Skriver, K. 2008. Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitin protein ligases. Biochem. J. 413, 447-457. https://doi.org/10.1042/BJ20071568
  82. Yamaguchi-Shinozaki, K. and Shinozaki, K. 2005. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci. 10, 88-94.
  83. Yoshida, R., Umezawa, T., Mizoguchi, T., Takahashi, S., Takahashi, F. and Shinozaki, K. 2006. The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J. Biol. Chem. 281, 5310-5318. https://doi.org/10.1074/jbc.M509820200
  84. Yoshida, T., Fujita, Y., Sayama, H., Kidokoro, S., Maruyama, K., Mizoi, J., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2010. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J. 61, 672-685. https://doi.org/10.1111/j.1365-313X.2009.04092.x
  85. Yoshida, T., Mogami, J. and Yamaguchi-Shinozaki, K. 2014. ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr. Opin. Plant Biol. 21, 133-139.
  86. You, J., Zong, W., Hu, H., Li, X., Xiao, J. and Xiong, L. 2014. A STRESS-RESPONSIVE NAC1-regulated protein phosphatase gene rice protein phosphatase18 modulates drought and oxidative stress tolerance through abscisic acid-independent reactive oxygen species scavenging in rice. Plant Physiol. 166, 2100-2114. https://doi.org/10.1104/pp.114.251116
  87. Zeevaart, J. A. and Creelman, R. A. 1988. Metabolism and physiology of abscisic acid. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39, 439-473. https://doi.org/10.1146/annurev.pp.39.060188.002255
  88. Zhang, H., Cui, F., Wu, Y., Lou, L., Liu, L., Tian, M., Ning, Y., Shu, K., Tang, S. and Xie, Q. 2015. The RING finger ubiquitin E3 ligase SDIR1 targets SDIR1-INTERACTING PROTEIN1 for degradation to modulate the salt stress response and ABA signaling in Arabidopsis. Plant Cell 27, 214-227. https://doi.org/10.1105/tpc.114.134163
  89. Zhang, H., Zhang, J., Quan, R., Pan, X., Wan, L. and Huang, R. 2013. EAR motif mutation of rice OsERF3 alters the regulation of ethylene biosynthesis and drought tolerance. Planta 237, 1443-1451. https://doi.org/10.1007/s00425-013-1852-x
  90. Zhang, Y., Yang, C., Li, Y., Zheng, N., Chen, H., Zhao, Q., Gao, T., Guo, H. and Xie, Q. 2007. SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell 19, 1912-1929.
  91. Zimmerli, C., Ribot, C., Vavasseur, A., Bauer, H., Hedrich, R. and Poirier, Y. 2012. PHO1 expression in guard cells mediates the stomatal response to abscisic acid in Arabidopsis. Plant J. 72, 199-211. https://doi.org/10.1111/j.1365-313X.2012.05058.x