• Title/Summary/Keyword: tolerant lines

Search Result 93, Processing Time 0.024 seconds

Effect of Prolonged Waterlogging on Growth and Yield of Characteristics of Maize (Zea mays L.) at Early Vegetative Stage (유묘기 장기간 습해처리에 따른 옥수수의 생육 및 수량 특성 변화)

  • Shin, Seonghyu;Jung, Gun-Ho;Kim, Seong-Guk;Son, Beom-Young;Kim, Sang Gon;Lee, Jin Seok;Kim, Jung Tae;Bae, Hwan-hee;Kwon, Youngup;Shim, Kang-Bo;Lee, Jae-Eun;Baek, Seong-Bum;Jeon, Weon-Tai
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.4
    • /
    • pp.271-276
    • /
    • 2017
  • Waterlogging strongly affects maize (Zea mays L.) growth. It is necessary to find the screening method of waterlogging tolerant maize lines. This study was to investigate the growth characters at V3 stage of maize, when is very sensitive to waterlogging. Six Korean maize inbred lines were subjected to waterlogging at V3 stage for 30 days. The 30 days waterlogging treatment significantly reduced plant height, number of expanded leaves, and SPAD value, compared with the control plants. SPAD values were significantly different among the six inbred lines, KS140 was the highest. The dry matter accumulation of aerial and root part were significantly decreased by 30 days waterlogging. KS140 was the weightiest among inbred lines. The dry matter of adventitious root showed same trend. Waterlogging treatment significantly reduced to ear length and thickness, grains filling length, grain number per ear, and maize grain. Plant height, SPAD value, and number of fully-expanded leave showed high correlation with maize grain yield, but number of senescent leaves, dry matter of adventitious root and TR ratio did not, suggesting that the former three traits may be good indicator for evaluating 30-day waterlogging tolerance of maize inbred lines. KS164 was the highest yield by increasing of grains filling length and grain number per ear of among waterlogging inbred lines. According to the results, evaluation of maize waterlogging should be consider both early growth characteristics and resilience in the later growth stages.

Development of Cryopreservation Protocols through Droplet-vitrification and its Application to Vegetatively Propagated Crop Germplasm (영양체 유전자원의 작은방울-유리화법에 의한 초저온동결보존 실용화기술개발)

  • Kim, Haeng-Hoon;Yi, Jung-Yoon;No, Na-Young;Cho, Gyu-Taek;Yoon, Mun-Sup;Baek, Hyung-Jin;Kim, Chung-Kon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.12-12
    • /
    • 2010
  • We developed droplet-vitrification protocol, a combination of droplet-freezing and solution-based vitrification, and applied to germplasm collections of garlic, potato, lily as well as cell lines, including hairy roots, somatic embryos. To establish a garlic cryobank, four Korean garlic field collections at Danyang, Suwon, Mokpo and Namhae were cryopreserved last five years. The protocol applied consisted of preculture for 3-4 days at $10^{\circ}C$ on solid MS medium with 0.3M sucrose, loading for 40 min in liquid medium with 35% PVS3, dehydration with PVS3 for 150 min, cooling in $5{\mu}l$ droplets of PVS3 placed on aluminum foil strips by dipping these strips in liquid nitrogen, warming them by plunging the foil strips into pre-heated($40^{\circ}C$) 0.8M sucrose solution for 30s. A total of over 900 accessions of garlic were stored in liquid nitrogen for long-term conservation using unripe inflorescences, cloves or bulbils. Twelve alternative plant vitrification solutions were designed by modifying cryoprotectant concentrations from the original PVS2 and PVS3. The results suggest that PVS2-based vitrification solutions with increased glycerol and sucrose and/or decreased DMSO and EG concentrations can be applied for medium size explants which are tolerant to chemical toxicity and moderately sensitive to osmotic stress. PVS3 and variants can be used widely when samples are heterogeneous, of large size and/or very sensitive to chemical toxicity and tolerant to osmotic stress.

  • PDF

Locating QTLs controlling overwintering seedling rate in perennial glutinous rice 89-1 (Oryza sativa L.)

  • Deng, Xiaoshu;Gan, Lu;Liu, Yan;Luo, Ancai;Jin, Liang;Chen, Jiao;Tang, Ruyu;Lei, Lixia;Tang, Jianghong;Zhang, Jiani;Zhao, Zhengwu
    • Genes and Genomics
    • /
    • v.40 no.12
    • /
    • pp.1351-1361
    • /
    • 2018
  • A new cold tolerant germplasm resource named glutinous rice 89-1 (Gr89-1, Oryza sativa L.) can overwinter using axillary buds, with these buds being ratooned the following year. The overwintering seedling rate (OSR) is an important factor for evaluating cold tolerance. Many quantitative trait loci (QTLs) controlling cold tolerance at different growth stages in rice have been identified, with some of these QTLs being successfully cloned. However, no QTLs conferring to the OSR trait have been located in the perennial O. sativa L. To identify QTLs associated with OSR and to evaluate cold tolerance. 286 $F_{12}$ recombinant inbred lines (RILs) derived from a cross between the cold tolerant variety Gr89-1 and cold sensitive variety Shuhui527 (SH527) were used. A total of 198 polymorphic simple sequence repeat (SSR) markers that were distributed uniformly on 12 chromosomes were used to construct the linkage map. The gene ontology (GO) annotation of the major QTL was performed through the rice genome annotation project system. Three main-effect QTLs (qOSR2, qOSR3, and qOSR8) were detected and mapped on chromosomes 2, 3, and 8, respectively. These QTLs were located in the interval of RM14208 (35,160,202 base pairs (bp))-RM208 (35,520,147 bp), RM218 (8,375,236 bp)-RM232 (9,755,778 bp), and RM5891 (24,626,930 bp)-RM23608 (25,355,519 bp), and explained 19.6%, 9.3%, and 11.8% of the phenotypic variations, respectively. The qOSR2 QTL displayed the largest effect, with a logarithm of odds score (LOD) of 5.5. A total of 47 candidate genes on the qOSR2 locus were associated with 219 GO terms. Among these candidate genes, 11 were related to cell membrane, 7 were associated with cold stress, and 3 were involved in response to stress and biotic stimulus. OsPIP1;3 was the only one candidate gene related to stress, biotic stimulus, cold stress, and encoding a cell membrane protein. After QTL mapping, a total of three main-effect QTLs-qOSR2, qOSR3, and qOSR8-were detected on chromosomes 2, 3, and 8, respectively. Among these, qOSR2 explained the highest phenotypic variance. All the QTLs elite traits come from the cold resistance parent Gr89-1. OsPIP1;3 might be a candidate gene of qOSR2.

Development of Salt-Tolerant Transgenic Rice Using Soybean PR10 Gene (콩의 Pathogenesis-Related 10 유전자를 이용한 내염성 벼 형질전환 계통 개발)

  • Kim, Hyo Jin;Baek, So Hyeon;Shin, Woon Chul;Seo, Chun Sun;Park, Myoung Ryoul;Ko, Jae Kwon;Yun, Song Joong
    • Korean Journal of Breeding Science
    • /
    • v.42 no.5
    • /
    • pp.540-546
    • /
    • 2010
  • This study was conducted to understand the role of soybean pathogenesis-related 10 (GmPR10) gene in salt tolerance and to develop salt-tolerant rice using GmPR10 cDNA. GmPR10 transgene was expressed constitutively in the shoot and root of the $T_1$ transgenic rice plants. Interestingly, however, the levels of the transgene expression were increased temporally up to over four- to five-fold in the shoot and root by 125 mM NaCl treatment, peaking at six hours after the treatment and decreasing thereafter. Electrolyte leakage of leaf cells under 125 mM NaCl treatment was lower in all the transgenic lines than in the control variety, Dongjin-byeo. Ability of seedlings to recover from 125 mM NaCl treatment for two weeks was higher in the transgenic plants than in the control plants. These results demonstrated that GmPR10 had function to increase cell integrity and promote growth under the saline stress imposed by NaCl. The transgenic line GmPR10-3 which showed highest ability to recover from the saline stress could be used as a potential source for salt tolerance in rice breeding programs.

Variation in Pod Shattering in a RIL Population and Selection for Pod Shattering Tolerance in Soybean [Glycine max (L.) Merr] (콩 RIL 집단의 내탈립성 변이 탐색 및 유망계통 선발)

  • Seo, Jeong Hyun;Kang, Beom Kyu;Kim, Hyun Tae;Kim, Hong Sik;Choi, Man Soo;Oh, Jae Hyeon;Shin, Sang Ouk;Baek, In Youl;Kwak, Do Yeon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.414-421
    • /
    • 2019
  • Pod shattering during the maturing stage causes a serious yield loss in soybean. It is the main limiting factor of soybean cultivation and mechanization. It is important to develop varieties suitable for mechanical harvesting and to develop energy-efficient agricultural machinery to save labor and costs. 'Daewonkong,' developed by the National Institute of Crop Science (NICS) in 1997, is an elite cultivar that occupies more than 80% of the soybean cultivation area in Korea because of its strong tolerance to pod shattering. The objectives of this study were to investigate the variation in pod shattering degree in a RIL population developed from a 'Daewonkong' parent and to select promising lines with pod shattering tolerance. 'Daewonkong' demonstrated a high level of tolerance to pod shattering compared to the 'Tawonkong' and 'Saeolkong' varieties, with no shattered pods after 72 hours of drying. Screening of pod shattering showed a clear distinction between the tolerant and susceptible varieties. Also, the distribution of shattering pod ratio in the two populations showed a similar pattern for three years. The promising lines with pod shattering tolerance included 27 lines in the 'Daewonkong'×'Tawonkong' population and 21 lines in the 'Daewonkong'×'Saeolkong' population. The promising lines are expected to be widely used as breeding parents for creating soybean cultivars with pod shattering tolerance.

Growth Characteristic of Warm-season Turfgrass in Saemangeum Reclaimed Land (새만금간척지에서 난지형 잔디의 생육 특성)

  • Bae, Eun-Ji;Han, Jeong-Ji;Lee, Kwang-Soo;Park, Yong-Bae;Choi, Su-Min
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.1
    • /
    • pp.13-23
    • /
    • 2016
  • This study was conducted to investigate the growth characteristics of warm-season turfgrasses and to find out suitable turfgrass species on Saemangeum reclaimed land. Twenty native zoysiagrass(Zoysia sinica, Z. matrella, Z. japonica, Medium-leaf type zoysiagrass(hybrid zoysiagrass)) and bermudagrass(Cynodon dactylon) collected from Korea were used in this study. Total stolon length and the number of stolon per square meter, relative growth rate of shoot and stolon, and coverage rate were analyzed for 2 year. C. dactylon showed not only the most growth response with high relative growth rate of shoot and stolon, which were 19.9% and 66.3%, but also resulted in higher level of turf visual quality compared to others. Whereas Z. japonica showed the least growth response with low relative growth rate of shoot and stolon, which were 2.4% and 0.7%. Although all warm-season turfgrasses took root and grew up well, there were different growth rates between the interspecies. Z. sinica 'Z2034', Z. matrella 'Z4091', Z. japonica 'Z1064', Medium-leaf type zoysiagrass 'ZN6019' and C. dactylon 'BN7014' were the greatest growth rate of shoot and stolon. These results will be useful for selecting salt tolerant breeding lines and also used to develop a turfgrass cultivar with strong salinity tolerance through continuous monitoring.

NTGST-Based Parallel Computer Vision Inspection for High Resolution BLU (NTGST 병렬화를 이용한 고해상도 BLU 검사의 고속화)

  • 김복만;서경석;최흥문
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.19-24
    • /
    • 2004
  • A novel fast parallel NTGST is proposed for high resolution computer vision inspection of the BLUs in a LCD production line. The conventional computation- intensive NTGST algorithm is modified and its C codes are optimized into fast NTGST to be adapted to the SIMD parallel architecture. And then, the input inspection image is partitioned and allocated to each of the P processors in multi-threaded implementation, and the NTGST is executed on SIMD architecture of N data items simultaneously in each thread. Thus, the proposed inspection system can achieve the speedup of O(NP). Experiments using Dual-Pentium III processor with its MMX and extended MMX SIMD technology show that the proposed parallel NTGST is about Sp=8 times faster than the conventional NTGST, which shows the scalability of the proposed system implementation for the fast, high resolution computer vision inspection of the various sized BLUs in LCD production lines.

Reaction of Cauliflower Genotypes to Black Rot of Crucifers

  • da Silva, Lincon Rafael;da Silva, Renan Cesar Dias;Cardoso, Atalita Francis;de Mello Pela, Glaucia;Carvalho, Daniel Diego Costa
    • The Plant Pathology Journal
    • /
    • v.31 no.2
    • /
    • pp.181-185
    • /
    • 2015
  • This study aimed to evaluate six cauliflower genotypes regarding their resistance to black rot and their production performance. To do so, it was conducted two field experiments in Ipameri, $Goi\acute{a}s$, Brazil, in 2012 and 2013. It was used a randomized block design, with four replications (total of 24 plots). Each plot consisted of three planting lines 2.5 m long (six plants/line), spaced 1.0 m apart, for a total area of $7.5m^2$. Evaluations of black rot severity were performed at 45 days after transplanting, this is, 75 days after sowing (DAS), and yield evaluations at 90 to 105 DAS. The Verona 184 genotype was the most resistant to black rot, showing 1.87 and 2.25% of leaf area covered by black rot symptom (LACBRS) in 2012 and 2013. However, it was not among the most productive materials. The yield of the genotypes varied between 15.14 and 25.83 t/ha in both years, Lisvera F1 (21.78 and 24.60 t/ha) and Cindy (19.95 and 23.56 t/ha) being the most productive. However, Lisvera F1 showed 6.37 and 9.37% of LACBRS and Cindy showed 14.25 and 14.87% of LACBRS in 2012 and 2013, being both considered as tolerant to black rot.

Proteomic analysis of Korean ginseng(Panax ginseng C. A. Meyer) following exposure to salt stress

  • Kim, Sun-Tae;Bae, Dong-Won;Lee, Kyung-Hee;Hwang, Jung-Eun;Bang, Kyong-Hwan;Kim, Young-Chang;Kim, Ok-Tae;Yoo, Nam-Hee;Kang, Kyu-Young;Hyun, Dong-Yun;Lim, Chae-Oh
    • Journal of Plant Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.185-193
    • /
    • 2008
  • We evaluated the response to salt stress of two different ginseng lines, STG3134 and STG3159, which are sensitive and tolerant, respectively, to salt treatment. Plants were exposed to a 5 dS/m salt solution, and chlorophyll fluorescence was measured. STG3134 ginseng was more sensitive than STG3159 to salt stress. To characterize the cellular response to salt stress in the two different lines, changes in protein expression were investigated using a proteomic approach. Total protein was extracted from detached salt-treated leaves of STG3134 and STG3159 ginseng, and then separated by two-dimensional polyacrylamide gel electrophoresis(2-DE). Approximately 468 protein spots were detected by 2-DE and Coommassie brilliant blue staining. Twenty-two proteins were found to be reproducibly up- or down-regulated in response to salt stress. Among these proteins, twelve were identified using MALDI-TOF MS and ESI-Q-TOF and classified into several functional groups: photosynthesis-related proteins(oxygen-evolving enhancer proteins 1 and 2, rubisco and rubisco activase), detoxification proteins(polyphenol oxidase) and defense proteins($\beta$-1,3-glucanase, ribonuclease-like storage protein, and isoflavone reductase-like protein). The protein levels of ribonuclease-like storage protein, which was highly induced in STG3159 ginseng as compared to STG3134, correlated tightly with mRNA transcript levels, as assessed by reverse-transcription(RT)-PCR. Our results indicate that salinity induces changes in the expression levels of specific proteins in the leaves of ginseng plants. These changes may, in turn, playa role in plant adaptation to saline conditions.

Crossbreeding and parental lineage influences the diversity and community structure of rice seed endophytes

  • Walitang, Denver I.;Halim, MD Abdul;Kang, Yeongyeong;Kim, Yongheon;Sa, Tongmin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.161-161
    • /
    • 2017
  • Seed endophytes are very remarkable groups of bacteria for their unique abilities of being vertically transmitted and conserved. As plants attain hybrid vigor and heterosis in the process of crossbreeding, this might also lead to the changes in the community structure and diversity of plant endophytes in the hybrid plants ultimately affecting the endophytes of the seeds. It would be interesting to characterize how seed endophyte composition change over time. The objective of this study is to gain insights into the influence of natural crossbreeding and parental lineage in the seed bacterial endophytic communities of two pure inbred lines exploring contributions of the two most important sources of plant endophytes - colonization from external sources and vertical transmission via seeds. Total genomic DNA was isolated from rice seeds and bacterial DNA was selectively amplified by PCR. The diversity of endophytic bacteria was studied through Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis. Diversity between the original parents and the pure inbred line may show significant differences in terms of richness, evenness and diversity indices. Heat maps reveal astonishing contributions of both or either parents (IR29 ${\times}$ Pokkali and AT401 ${\times}$ IR31868) in the shaping of the bacterial seed endophytes of the hybrid, FL478 and IC32, respectively. Most of the T-RFs of the subsequent pure inbred line could be traced to any or both of the parents. Comparison of common and genotype-specific T-RFs of parents and their offspring reveals that majority of the T-RFs are shared suggesting higher transmission of bacterial communities common to both parents. The parents influence the bacterial community of their offspring. Unique T-RFs of the offspring also suggest external sources of colonization particularly as the seeds are cultivated in different ecogeographical locations. This study showed that host parental lines contributed greatly in the shaping of bacterial seed endophytes of their offspring. It also revealed transmission and potential conservation of core seed bacterial endophytes that generally become the dominant microbiota in the succeeding generations of plant hosts.

  • PDF