• Title/Summary/Keyword: titanium scrap

Search Result 17, Processing Time 0.026 seconds

A study on Titanium Hydride Formation of Used Titanium Aircraft Scrap for Metal Foaming Agents

  • Hur, Bo-Yong;Ahn, Duck-Kyu;Kim, Sang-Youl;Jeon, Sung-Hwan;Park, Su-Han;Ahn, Hyo-Jun;Park, Chan-Ho;Yoon, Ik-Sub
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.209-212
    • /
    • 2001
  • Aircraft industry is developed very fast so titanium scrap was generated to manufacture. Titanium scrap was wasted and used to deoxidize cast iron so we are study recycling of it. In this research were studied that metal hydride of reacted in hydrogen chamber of AMS4900, 4901, return scrap titanium alloy and sponge titanium granule. The temperature of hydrogenation was 40$0^{\circ}C$ in the case of pure sponge titanium but return scrap titanium alloy were step reaction temperature at 40$0^{\circ}C$ and 50$0^{\circ}C$, and after the hydride of titanium alloy were crushed by ball mill for 5h. Titanium hydride contains to 4wt.% of hydrogen theoretically as theory. It was determined by heating and cooling curve in reaction chamber. The result of XRD was titanium hydride peak only that it was similar to pure titanium. Titanium hydride Powder particle size was about 45${\mu}{\textrm}{m}$, and recovery ratio was 95w% compared with scrap weight for a aluminum foam agent.

  • PDF

Ingot Casting with Ferro-Titanium Pretreatment Process using Ti Scrap (타이타늄 스크랩을 활용한 페로 -타이타늄 전처리 공정 적용 모합금 주조)

  • Lee, Cho-Long;Park, Jong-Bum;Kang, Tae-Woong;Min, Tae-Sik;Jeon, Soo-Hyeok;Ro, Yoon-Gyeong
    • Journal of Korea Foundry Society
    • /
    • v.41 no.2
    • /
    • pp.139-143
    • /
    • 2021
  • A type of titanium alloy, ferro-titanium, is the main material used to manufacture steel and stainless steel. Considering economic aspects, ferro-titanium ingots are intended to be manufactured using low-cost titanium scrap, and the best pretreatment process for removing impurities from recycled titanium scrap surfaces was studied here. Instead of ordinary acid or organic solvents, ecofriendly methods were researched and applied, and chip scrap materials were used. A high-quality ferro-titanium ingot was manufactured from titanium scrap after a pretreatment process was applied, and the impurities and properties were analyzed and compared with commercial material standards through a component analysis.

Current Status of Titanium Recycling Technology (타이타늄의 리사이클링 기술 현황)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.26-34
    • /
    • 2021
  • Titanium is the fourth most abundant structural metal, after aluminum, iron, and magnesium. However, it is classified as a 'rare metals', because it is difficult to smelt. In particular, the primary titanium production process is highly energy-intensive. Recycling titanium scraps to produce ingots can reduce energy consumption and CO2 emissions by approximately 95 %. However, the amount of metal recycled from scrap remains limited of the difficulty in removing impurities such as iron and oxygen from the scrap. Generally, high-grade titanium and its alloy scraps are recycled by dilution with a virgin titanium sponge during the remelting process. Low-grade titanium scrap is recycled to ferrotitanium (cascade recycling). This paper provides an overview of titanium production and recycling processes.

The recycle of titanium scrap by electron beam melting and plasma arc melting process (전자빔용해 및 플라즈마아크용해에 의한 티타늄 스크랩의 재활용)

  • Choi, Good-Sun;Park, Jong-Bum;Oh, Jung-Min;Moon, Young-Hee;Um, Tae-Kyung;Kim, Young-Suk;Kim, Young-Rog
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2006.05a
    • /
    • pp.56-60
    • /
    • 2006
  • In 2005, the imports of titanium metals was about 22.8 million US$(7,700 tons) in Korea. New scrap produced was estimated to be 359 tons and the exports were about 352 tons. Generally scrap is recylced into titanium ingot either with or without virgin metal using traditional vacuum-arc-melting and cold hearth melting. In Korea, there is no titanium ingot producers(recyclers). In this paper, the brief summary of major titanium melting technology, such as vacuum arc remelting(VAR), electron beam melting(EBM), plasma arc melting(PAM) is given and discussed. In view of titanium market situation of Korea, the technological development of ingot production from scrap is big problem to be solved in order to realize extensive cost reduction for titanium products.

  • PDF

Study on the Remelting of Titanium Scrap by DC-ESR Process (DC-ESR법(去)을 이용한 타이타늄 스크랩의 재용융(再熔融)에 관한 연구(硏究))

  • Seo, Yeung-Deuk;Lee, Ho-Seong;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.16 no.4
    • /
    • pp.33-39
    • /
    • 2007
  • Titanium scrap was re-melted and refined by using a DC-ESR (Direct Current Electro Slag Remelting) apparatus. A graphite rod was used as an anode. The used slag was $CaF_2-TiO_2-CaO$ slag system. The effect of slag composition on the shape and oxygen content of re-melted ingot was studied. The titanium ingot was produced very well from the $CaF_2-TiO_2$ slag system, and the oxygen content of the ingot was less than that of titanium scrap. The addition of CaO into $CaF_2-TiO_2$ slag system made the bad shape of titanium ingot. The oxygen content of the ingot was also higher than that of titanium scrap.

Deoxidation of Titanium Scrap by Calciothermic Reduction (칼슘열환원법(熱還元法)에 의한 타이타늄 스크랩의 탈산(脫酸))

  • Yoon, Moo-Won;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.22 no.6
    • /
    • pp.41-47
    • /
    • 2013
  • In this study, deoxidation of Ti scrap using liquid calcium was investigated. Experiments were conducted in a closed stainless steel chamber under Ar atmosphere during 30 to 90 minutes. Oxygen content of Ti scrap was reduced from 0.54 to 0.19 wt% by calciothermic reduction in 30 minutes at $1000^{\circ}C$ and 2.5 Ti/Ca mass ratio. By the calciothermic reduction of Ti scrap for 30 minutes under the reaction temperature of $1100^{\circ}C$ and 2.5 Ti/Ca mass, a minimum oxygen content of about 0.126 wt% in Ti scrap was obtained.

Development of a Methodology for Estimating Radioactivity Concentration of NORM Scale in Scrap Pipes Based on MCNP Simulation

  • Wanook Ji;Yoomi Choi;Zu-Hee Woo;Young-Yong Ji
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.481-487
    • /
    • 2023
  • Concerning the apprehensions about naturally occurring radioactive materials (NORM) residues, the International Atomic Energy Agency (IAEA) and its member nations have acknowledged the imperative to ensure the radiation safety of NORM industries. Residues with elevated radioactivity concentrations are predominantly produced during NORM processing, in the form of scale and sludge, referred to as technically enhanced NORM (TENORM). Substantial quantities of TENORM residues have been released externally due to the dismantling of NORM processing factories. These residues become concentrated and fixed in scale inside scrap pipes. To assess the radioactivity of scales in pipes of various shapes, a Monte Carlo simulation was employed to determine dose rates corresponding to the action level in TENORM regulations for different pipe diameters and thicknesses. Onsite gamma spectrometry was conducted on a scrap iron pipe from the titanium dioxide manufacturing factory. The measured dose rate on the pipe enabled the estimation of NORM concentration in the pipe scale onsite. The derived action level in dose rate can be applied in the NORM regulation procedure for on-site judgments.