• Title/Summary/Keyword: tissue nutrient content

Search Result 73, Processing Time 0.027 seconds

Development of Indicator for Coastal and Estuarine Eutrophication Using Morphological Characteristics and Tissue N Content of Eelgrass, Zostera marina

  • Lee, Kun-Seop
    • ALGAE
    • /
    • v.19 no.2
    • /
    • pp.129-137
    • /
    • 2004
  • Since cultural eutrophication has the detrimental effects on estuarine and coastal ecosystems, recognition of early stage of nutrient over-enrichment is critical for effective managements of the ecosystems. Since released nutrients into coastal ecosystems are diluted and dissipated through tidal action and rapid uptakes by marine plants, monitoring of in situ nutrient concentrations may not be useful for detecting early eutrophication on coastal and estuarine ecosystems. To develop an effective indicator of cultural eutrophication using marine plants, tissue N content and area normalized leaf mass of eelgrass, Zostera marina were examined in Kosung Bay and Koje Bay on the south coast of Korea from June 2001 to April 2003. Eelgrass tissue N content exhibited obvious seasonal variations. Leaf N content was highest during winter and early spring and lowest during summer. Eelgrass tissue N content was higher at Kosung Bay site, which has higher sediment organic content, than at Koje Bay site. Area normalized leaf mass showed reverse trend of leaf N content, and consequently, eelgrass leaf N content and leaf mass exhibited strong negative correlation at both study sites. The results of the present study suggested that the ratio of eelgrass leaf N content to area normalized leaf mass can be applied to assess environmental nitrogen conditions on the coastal and estuarine ecosystems.

Changes of Tissue N Content and Community Structure of Macroalgae on Intertidal Rocky Shores in Tongyeong Area due to Sewage Discharge (통영 지역의 암반 조간대에서 배출수 유입으로 인한 해조 군집 구조와 엽체 내 질소 함량의 변화)

  • Kang, Yun-Hee;Park, Sang-Rul;Oak, Jung-Hyun;Lee, Jin-Ae;Chung, Ik-Kyo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.3
    • /
    • pp.276-283
    • /
    • 2009
  • Enrichment in nutrients coming from urban sewage outfalls can lead to eutrophication in coastal areas, which can also change the species composition and community structure of macro algal communities. We investigated the structure of the macro algal community within three rocky shores in order to assess any possible differences in their characteristics. Site 1 was located near Tongyeong city's sewage outfall, Site 2 was located near a public beach area, and Site 3 faced open channel of the Ocean. All three sites were located within the same stretch of the coast, where Site 2 was located between sites 1 and 3. We measured the nutrient concentration in water and the tissue nitrogen content in macro algae samples. Nutrients in the water column surrounding site 1 were high in ammonium ($30.2\pm1.8{\mu}M$), nitrate ($26.2{\pm}0.1{\mu}M$), and phosphate ($2.7{\pm}0.1{\mu}M$) content, and were characterized by low numbers of macroalgal species and species and a low species diversity index. In contrast, site 3 exhibited relatively low nutrient concentration levels and a high number of macroalgal species and a high species diversity index. Comparative analysis showed that the tissue nitrogen content of macroalgae were significantly (P<0.05) affected by the nutrient concentration in the water column. The tissue nitrogen content of green algae within site 1 was higher than the others sites. However, the tissue nitrogen content of brown algae was similar at all three sites. Thus, the tissue nitrogen content of macro algae and the macro algal community structure of intertidal rocky shores were dependent on location and the performance of macroalgal communities was dependent on water quality.

Effect of salinity on growth and nutrient uptake of Ulva pertusa (Chlorophyta) from an eelgrass bed

  • Choi, Tae-Seob;Kang, Eun-Ju;Kim, Ju-Hyoung;Kim, Kwang-Young
    • ALGAE
    • /
    • v.25 no.1
    • /
    • pp.17-26
    • /
    • 2010
  • The effects of salinity on various ecophysiological parameters of Ulva pertusa such as growth, nutrient uptake, photosynthetic performance and internal nutrient composition were tested. U. pertusa was collected from an eelgrass bed in a semi-protected embayment on the southwest coast of Korea. Under salinity regimes from 5 to 40 psu, the specific growth rates $(\mu)$ of U. pertusa ranged from 0.019 to $0.032\;d^{-1}$. Maximum growth rate was observed at 20 psu, and minimum at 40 psu. This species showed various uptake rates for nitrate and phosphate. Nutrient uptake was noticeably higher at intermediate salinity levels, and lower at both extremes. Salinity significantly influenced chlorophyll-$\alpha$ content and effective quantum yield. Tissue nitrogen content ranged from 1.5 to 2.9% N (dry weight), whereas tissue phosphorus ranged from 0.1 to 0.14% P (dry weight). The N : P ratio in the tissue of U. pertusa was considerably higher, ranging from 30 to 50. Increased growth at lower salinity suggests that the initial growth rate of U. pertusa is greater during the rainy season (i.e., late spring and early summer) than any other season during the year. The appearance of an Ulva bloom in eelgrass beds may be triggered by salinity more than by other environmental factors such as light and temperature.

Seasonal Dynamics of the Seagrass Zostera marina on the South Coast of the Korean Peninsula

  • Lee, Kun-Seop;Kang, Chang-Keun;Kim, Young-Sang
    • Journal of the korean society of oceanography
    • /
    • v.38 no.2
    • /
    • pp.68-79
    • /
    • 2003
  • Although seagrasses are relatively abundant, few studies have been conducted on seagrass physiology and ecology in Korea. Zostera marina is the most abundant seagrass species, widely distributed throughout all coastal areas of the Korean peninsula. To examine seasonal dynamics and spatial variations of eelgrass, Zostera marina distributed on the coast of Korea, morphological characteristics, biomass, tissue nutrient constituents, leaf productivity and environmental factors were monitored monthly from the eelgrass beds in Kabae Bay and Kosung Bay on the south coast of the Korean peninsula from June 2001 to June 2002. Eelgrass density, biomass, morphological characteristics, leaf productivities, and tissue nutrient constituents exhibited clear seasonal variations, and these seasonal trends reflected seasonal changes in water temperature. Eelgrass shoot density and biomass at Kabae Bay site showed more obvious seasonal trends than Kosung Bay. No strong seasonality in Kosung Bay site appeared to be caused by high water temperature ($>30{\circ}C$) during summer months at this site. Despite differences in nutrient availabilities between two study sites, eelgrass biomass and leaf productivities were not significantly different between study sites, and this lack of spatial variations implies that the ambient nutrient availabilities at the present study sites are in excess of seagrass nutrient demand. Eelgrass tissue N content and sediment pore water DIN concentrations exhibited reverse relationship at the present study. This reverse relationship suggests in situ nutrient concentrations are not good indicator of nutrient availabilities, and regeneration and turnover rates of sediment nutrients are also important factors to determine nutrient availabilities at the site.

Effect of Nutrient Concentrations and Leaching Percentage on Growth and Nutrient Uptake by Perilla Frutesens Britton var. Japonica Hara in Plug Culture (잎들깨의 플러그육모에서 용탈률 및 시비농도가 생육 및 무기원소 흡수에 미치는 영향)

  • Choi, Jong-Myung;Yoon, Hwa-Mo;Park, Jong-Yoon
    • The Journal of Natural Sciences
    • /
    • v.13 no.1
    • /
    • pp.83-96
    • /
    • 2003
  • Effect of Nutrient Concentrations, fertigation frequency, and learching percentage on crop growth and nutrient concentrations in root media were evaluated. The treatment of each irrigation with $50 mg.L^{-1}$ of nitrogen in stage 2 and increase to $80 mg.L^{-1}$ nitrogen in stage 3 had the highest crop growth at 34 days after sowing among treatments tested. Feeding with low nutrient concentrations and elevated frequency decreased crop growth. In treatments of each leaching percentage, feeding with low nutrient concentrations and elevated frequency resulted in increased tissue nutrient contents. The less tissue potassium content and higher calcium and magnesium contents were observed in treatment of 50% leach than those in 0% leach. All treatment tested had soil solution pH higher than 6.8. Electrical conductivity in treatments of 50% leach were lower than those of 0% leach. Feeding with low nutrient concentrations and elevated feeding frequency in each leaching percentage resulted in increased electrical conductivity in soil solution of root media. Trends of medium nutrient concentrations were similar to those of electrical conductivity.

  • PDF

Chitosan Stimulates Calcium Uptake and Enhances the Capability of Chinese Cabbage Plant to Resist Soft Rot Disease Caused by Pectobacterium carotovorum ssp. carotovorum

  • Jang, Eun-Jung;Gu, Eun-Hye;Hwang, Byoung-Ho;Lee, Chan;Kim, Jong-Kee
    • Horticultural Science & Technology
    • /
    • v.30 no.2
    • /
    • pp.137-143
    • /
    • 2012
  • Chinese cabbage plant was grown hydroponically for 4 weeks in order to examine the temporal relationship of calcium concentration of the nutrient solution with calcium content in the leaf tissue and susceptibility of the tissue to soft rot disease by $Pectobacterium$ $carotovorum$ ssp. $carotovorum$ (Pcc). Calcium concentration from 0.5 to 32.0 mM was maintained for 1 week using Hoagland & Arnon solution. The calcium content of the leaf was proportionally increased to the concentration of the nutrient in the solution (r = 0.912). In contrast, the severity of soft rot symptom in the young leaves was inversely related with the amount of calcium supplied to the nutrient solution (r = 0.899). Water-soluble chitosan, prepared by hollow fiber filtration (> 100 kDa) was applied into the nutrient solution from 0.0 to 5,000 ppm. The chitosan of 10 ppm was the most effective to promote calcium uptake of the leaf, showing 155% of the control. The same chitosan solution prohibited most soft rot development of the leaf by Pcc, exhibiting only 53% of the control. Among different molecular weight fractions, chitosan fraction obtained from 30-100 kDa molecular weight cut-off promoted calcium uptake the most up to 163% of the control, and reduced the development of soft rot disease recording merely 36% of the control of the leaf tissue. The results obtained in the present study suggest that large scale production of water-soluble chitosan with an optimum molecular weight and its commercial application to Chinese cabbage production will be important to improve yield and quality of the crop.

The Effect of Substrate on Ecophysiological Characteristics of Green Macroalga Ulva pertusa Kjellman (Chlorophyta) (구멍갈파래(Ulva pertusa Kjellman)의 생태생리에 대한 생육기질의 효과)

  • Choi, Tae-Seob;Kim, Kwang-Young
    • ALGAE
    • /
    • v.20 no.4
    • /
    • pp.369-377
    • /
    • 2005
  • Seashore joining with land and sea, which is typical habitat for marine macroalgae, is classified two types of shore as soft- and hard-bottom shore according to topographical (geological) and ecological features. We compared two of Ulva pertusa Kjellman from two contrasting habitats, sandy (soft-bottom, Haenam) and rocky shore (hard-bottom, Hadong) in terms of chlorophyll-a fluorescence and its parameters, and various photosynthetic pigment and nutrient content in the tissue of those. Both of habitats were different in the light environment such as light attenuation coefficient and even in nutrient concentration of ambient seawater. Electron transport rate (ETR) of Ulva from sandy shore was higher than from rocky shore. The range of photosynthetic pigment content in the tissue of U. pertusa was significantly much more in from sandy shore, and also nitrogen and phosphorus content were significantly higher except for carbon content. However, there were no significant differences in the ratio of among photosynthetic pigments, and N:P ratio was similar between each other, even though significantly different. Our result implied on the reason of why most of green tides in the worldwide concentrated and frequently occurred at sites with sandy, muddy and silty bottoms, being classified as soft-bottom shore.

Growth, Deficiency Symptom and Tissue Nutrient Contents of Leaf Perilla (Perilla frutesens Britt) as Influenced by Potassium Concentrations in the Fertigation Solution (칼륨 시비농도가 잎들깨의 생육, 결핍증상 및 무기원소 함량에 미치는 영향)

  • Choi, Jong-Myung;Park, Jong-Yoon
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.372-378
    • /
    • 2007
  • This study was carried out to investigate the effect of potassium concentrations in fertigation solution on growth and development of nutrient deficiency symptoms of leaf perilla (Perilla frutesens). The nutrient concentrations in above ground plant tissue, petiole sap and soil solution of root media were also determined. Potassium deficiency symptoms developed in older leaves with marginal necrosis. The brown areas on the lower leaves enlarged rapidly and the margins became scorched. Elevation of K concentrations in the fertigation solution up to 8 mM increased the crop growth in leaf length, stem thickness, and fresh and dry matter production of above ground plant tissue. However, that decreased the chlorophyll contents. The 8.0 mM K treatment which showed the greatest growth had 5.01 g in dry weight and 2.76% in K content of above ground plant tissue, suggesting that maintaining K content higher than 1.7% is necessary for good growth of Perilla frutesens. The K concentrations in petiole sap and soil solution of 8.0 mM treatment were $12,289mg{\cdot}kg^{-1}\;and\;11.65mg{\cdot}L^{-1}$, respectively. These indicated that K fertilization to maintain higher than $8,700mg{\cdot}kg^{-1}$ in petiole sap and $4.5mg{\cdot}L^{-1}$ in soil solution are necessary to ensure good crop growth.

Effect of N and P Fertilization on Nutrient Use Efficiency of Pinus densiflora, Larix leptolepis, and Betula platyphylla var. japonica Seedlings (질소와 인 시비가 소나무, 일본잎갈나무, 자작나무 묘목의 양분이용효율에 미치는 영향)

  • Shin, Jung-A;Son, Yo-Whan;Hong, Sung-Gak;Kim, Young-Kul
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.4
    • /
    • pp.304-309
    • /
    • 1999
  • Biomass, tissue (foliage, stem. and root) nutrient concentration, and nutrient use efficiency (NUE) were determined for 1-year-old Pinus densiflora, Larix leptolepis and Betula platyphvlla var. japonica seedlings in a greenhouse under nitrogen (N) and phosphorus (P) fertilization treatments. There were no consistent patterns in the effect of fertilization on seedling growth, however, in most cases the addition of N and P had no stimulating effect on biomass. In general, seedling tissue N and P concentrations increased after fertilization. It appeared that fertilization induced luxury nutrient consumption because uptake was increased without altering biomass. The NUE. calculated as the ratio between total above and belowground production and nutrient content in seedlings, decreased with increasing N and P supply for P. densiflora and B. platyphylla var. japonica while that for L. leptolepisthe did not change. B. platyphylla var. japonica had the highest NUE, L. leptolepis the lowest, with P. densiflora having the intermediate NUE.

  • PDF

Effects of Sulfate Ion Concentration in Nutrient Solution on the Growth and Quality of Artemisia mongolicar var. tenuifolia (배양액 내의 황산이온 농도가 참쑥의 생육과 품질에 미치는 영향)

  • Lee, Yun-Jeong;Park, Kuen-Woo;Suh, Eun-Joo;Cheong. Jin-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.7 no.1
    • /
    • pp.55-61
    • /
    • 1998
  • This experiment was conducted to evaluate the effects of sulfate ion concentration in nutrient solution on the growth and qualify of Mongolian wormwood (Artemisia mongolica var. tenuifolia). Sulfate ion concentration was treated 0, 0.5, 1, 2 and 3mM using the modified nutrient solution composition for herb plants developed by European Vegetable R & D Center in Belgium. The growth of Mongolian wormwood was good at 3mM treatment and dry weight was best at 3mM treatment, Chlorophyll content increased with sulfate ion concentration. Mineral content did not show any significant difference among treatments. But Ca content in tissue markedly decreased at 3mM treatment. Sulfate ion uptake increased in proportion to sulfate ion concentration in nutreint solution, the higher sulfate ion concentration, the more uptake of sulfate ion by plant. At 1mM sulfate ion treatment, essential oil content was best, but the higher sulfate ion concentration resulted in decrease of essential oil content.

  • PDF