DOI QR코드

DOI QR Code

Development of Indicator for Coastal and Estuarine Eutrophication Using Morphological Characteristics and Tissue N Content of Eelgrass, Zostera marina

  • Published : 2004.06.30

Abstract

Since cultural eutrophication has the detrimental effects on estuarine and coastal ecosystems, recognition of early stage of nutrient over-enrichment is critical for effective managements of the ecosystems. Since released nutrients into coastal ecosystems are diluted and dissipated through tidal action and rapid uptakes by marine plants, monitoring of in situ nutrient concentrations may not be useful for detecting early eutrophication on coastal and estuarine ecosystems. To develop an effective indicator of cultural eutrophication using marine plants, tissue N content and area normalized leaf mass of eelgrass, Zostera marina were examined in Kosung Bay and Koje Bay on the south coast of Korea from June 2001 to April 2003. Eelgrass tissue N content exhibited obvious seasonal variations. Leaf N content was highest during winter and early spring and lowest during summer. Eelgrass tissue N content was higher at Kosung Bay site, which has higher sediment organic content, than at Koje Bay site. Area normalized leaf mass showed reverse trend of leaf N content, and consequently, eelgrass leaf N content and leaf mass exhibited strong negative correlation at both study sites. The results of the present study suggested that the ratio of eelgrass leaf N content to area normalized leaf mass can be applied to assess environmental nitrogen conditions on the coastal and estuarine ecosystems.

Keywords

References

  1. Atkinson M.J. and Smith S.V. 1983. C:N:P ratios of benthic marine plants. Limnol. Oceanogr. 28: 568-574 https://doi.org/10.4319/lo.1983.28.3.0568
  2. Boon P. I., Moriarty D.J.W. and Saffigna P.G. 1986. Rates of ammonium turnover and the role of amino-acid deamination in seagrass (Zostera capricorni) beds of Moreton Bay, Australia. Mar. Biol. 91: 259-268 https://doi.org/10.1007/BF00569442
  3. Cambridge M.L., Chiffings A.W., Moore B.L. and McComb A.J. 1986. The loss of seagrass in Cockburn Sound, Western Australia. II. Possible causes of seagrass decline. Aquat. Bot. 24: 269-285 https://doi.org/10.1016/0304-3770(86)90062-8
  4. Cambridge M.L. and McComb AI. 1984. The loss of seagrasses in Cockburn Sound, Western Australia. I. The time course and Magnitude of seagrass decline in relation to industrial development. Aquat. Bot. 20: 229-243 https://doi.org/10.1016/0304-3770(84)90089-5
  5. Capone D.G. 1982. Nitrogen fixation (acetylene reduction) by rhizosphere sediments of the eelgrass Zostera marina. Mar. Ecol. Prog. Ser. 10: 67-75 https://doi.org/10.3354/meps010067
  6. Deegan L.A, Wright A, Ayvazian S.G., Finn J.T., Golden H., Merson RR and Harrison J. 2002. Nitrogen loading alters seagrass ecosystem structure and support of higher trophic levels. Aquatic Conserv.: Mar. Freshw. Ecosyst. 12: 193-212 https://doi.org/10.1002/aqc.490
  7. Duarte C.M. 1990. Seagrass nutrient content. Mar. Ecol. Prog. Ser. 67: 201-207 https://doi.org/10.3354/meps067201
  8. Fong P., Boyer KE. and Zedler J.B. 1998. Developing an indicator of nutrient enrichment in coastal estuaries and lagoons using tissue nitrogen content of the opportunistic alga, Enteromorpha intestinalis (L. Link). J. Exp. Mar. BioI. Ecol. 231: 63-79 https://doi.org/10.1016/S0022-0981(98)00085-9
  9. Fong P., Donohoe R.M. and Zedler J.B. 1994. Nutrient concentration in tissue of the macroalga Entromorpha as a function of nutrient history: an experimental evaluation using field microcosms. Mar. Ecol. Prog. Ser. 106: 273-281 https://doi.org/10.3354/meps106273
  10. Fourqurean J.W., Moore T.O., Fry B. and Hollibaugh J.T. 1997. Spatial and temporal variation in C:N:P ratios, 015N, and 013C of eelgrass Zostera marina as indicators of ecosystem processes, Tomales Bay, California, USA Mar. Ecol. Prog. Ser. 157: 147-157 https://doi.org/10.3354/meps157147
  11. Fourqurean J.W., Zieman J.e. and Powell G.V.N. 1992. Phosphorus limitation of primary production in Florida Bay: evidence from the C:N:P ratios of the dominant seagrass Thalassia testudinum. Limnol. Oceanogr. 37: 162-171 https://doi.org/10.4319/lo.1992.37.1.0162
  12. Hines M.E. and Lyons W.B. 1982. Biogeochemistry of nearshore Bermuda sediments. I. Sulfate reduction rates and nutrient generation. Mar. Ecol. Prog. Ser. 8: 87-94 https://doi.org/10.3354/meps008087
  13. Holmer M. and Nielsen S.L. 1997. Sediment sulfur dynamics related to biomass-density patterns in Zostera marina (eelgrass) beds. Mar. Ecol. Prog. Ser. 146: 163-171 https://doi.org/10.3354/meps146163
  14. Iizumi H. and Hattori A 1982. Growth and organic production of eelgrass (Zostera marina L.) in temperate waters of the Pacific coast of Japan. III. The kinetics of nitrogen uptake. Aquat. Bot. 12: 245-256 https://doi.org/10.1016/0304-3770(82)90020-1
  15. Lapointe B.E., Tomasko D.A. and Matzie W.R. 1994. Eutrophication and trophic state classification of seagrass communities in the Florida Keys. Bull. Mar. Sci. 54: 696-717
  16. Lee K-S. and Dunton, K.H. 1999a. Influence of sediment nitrogen-availability on carbon and nitrogen dynamics in the seagrass Thalassia testudinum. Mar. Biol. 134: 217-226 https://doi.org/10.1007/s002270050540
  17. Lee K.-S. and Dunton KH. 1999b. Inorganic nitrogen acquisition in the seagrass Thalassia testudinum: Development of a whole-plant nitrogen budget. Limnol. Oceanogr. 44: 1204-1215 https://doi.org/10.4319/lo.1999.44.5.1204
  18. Lee K-S. and Dunton K.H. 2000. Effects of nitrogen enrichment on biomass allocation, growth, and leaf morphology of the seagrass Thalassia testudinum. Mar. Ecol. Prog. Ser. 196: 39-48 https://doi.org/10.3354/meps196039
  19. Lee K-S. and Lee S.Y. 2003. The seagrasses of the Republic of Korea. In: Green E.P. and Short F.T. (eds), World Atlas of Seagrasses: Present status andfuture conservation. University of California Press. pp. 193-198
  20. Lee K-S., Short F.T. and Burdick D.M. 2004. Development of a nutrient pollution indicator using the seagrass, Zostera marina, along nutrient gradients in three New England estuaries. Aquat. Bot. 78: 197-216 https://doi.org/10.1016/j.aquabot.2003.09.010
  21. McMahon K and Walker D.I. 1998. Fate of seasonal, terrestrial nutrient inputs to a shallow seagrass dominated embayment. Est. Coast. ShelfSci. 46: 15-25
  22. Morgan K.c. and Simpson F.J. 1981. Cultivation of Palmaria (Rhodymenia) palmata: effects of high concentrations of nitrate and ammonium on growth and nitrogen uptake. Aquat. Bot. 11: 167-171 https://doi.org/10.1016/0304-3770(81)90057-7
  23. Moriarty D.J.W. Boon P.I., Hansen J., Hunt W.G., Pointer I.R, Pollard r.c, Skyring GW. and White D.C. 1985. Microbial biomass and productivity in seagrass beds. Geomicrobiol. J. 4: 21-51 https://doi.org/10.1080/01490458509385919
  24. Nixon S.W., Oviatt C.A., Frithser J. and Sullivan B. 1986. Nutrient and the productivity of estuaries and coastal and marine ecosystems. J. Limnol. Soc. SouthAfrica 12: 43-71 https://doi.org/10.1080/03779688.1986.9639398
  25. Parsons T.R, Maita Y. and Lalli C.M. 1984. A manual of chemical and biological methods for seawater analysis. Pergammon Press, New York
  26. Peters G., Paznokas W. and Noyes V. 1986. A review of nutrient standards for the coastal lagoons in the San Diego region. San Diego Region Report, California Regional Water Quality Control Board, San Diego
  27. Shin H. and Choi H.-K 1998. Taxonomy and distribution of Zostera (Zosteraceae) in eastern Asia, with special reference to Korea. Aquat. Bot. 60: 49-66 https://doi.org/10.1016/S0304-3770(97)00066-1
  28. Short F.T. 1983. The seagrass, Zostera marina L.: plant morphology and bed structure in relation to sediment ammonium in Izembek Lagoon, Alaska. Aquat. Bot. 16: 149-161 https://doi.org/10.1016/0304-3770(83)90090-6
  29. Short F.T. 1987. Effects of sediment nutrients on seagrasses: literature review and mesocosm experiment. Aquat. Bot. 27: 41-57 https://doi.org/10.1016/0304-3770(87)90085-4
  30. Short F.T. and Burdick D.M. 1996. Quantifying eelgrass habitat loss in relation to housing development and nitrogen loading in Waquoit Bay, Massachusetts. Estuaries 19: 730-739 https://doi.org/10.2307/1352532
  31. Short F.T., Burdick D.M., Granger S. and Nixon S.W. 1996. Long-term decline in eelgrass, Zostera marina L., linked to increased housing development. In: Kuo J. Phillips R.C, Walker D.l. and Kirkman H. (eds), Seagrass Biology: Proceedings of an International Workshop, pp. 291-298
  32. Short F.T., Dennison W.C and Capone D.G., 1990. Phosphoruslimited growth of the tropical seagrass Syringodium filiforme in carbonate sediments. Mar. Ecol. Prog. Ser. 62: 169-174 https://doi.org/10.3354/meps062169
  33. Short F.T. and McRoy C.P. 1984. Nitrogen uptake by leaves and roots of the seagrass Zostera marina L. Bot. Mar. 27: 547-555 https://doi.org/10.1515/botm.1984.27.12.547
  34. Shubert L.E. 1984. Algae as ecological indicator. Academic Press, London
  35. Stapel J., Aarts T.L., van Duynhoven B.H.M., de Groot J.D., van den Hoogen P.H.W. and Hemminga M.A. 1996. Nutrient uptake by leaves and roots of the seagrass Thalassia hemprichii in the Spermonde Archipelago, Indonesia. Mar. Ecol. Prog. Ser. 134: 195-206 https://doi.org/10.3354/meps134195
  36. Taylor D.L, Nixon S.W., Granger S.L. and Buckley B.A. 1999. Responses of coastal lagoon plant communities to levels of enrichment: a mesocosm study. Estuaries 22: 1041-1056 https://doi.org/10.2307/1353082
  37. Terrados J. and Williams S.L. 1997. Leaf versus root nitrogen uptake by the surfgrass Phyllospadix torreyi. Mar. Ecol. Prog. Ser.149: 267-277 https://doi.org/10.3354/meps149267
  38. Thursby G.B. and Harlin M.M. 1982. Leaf-root interaction in the uptake of ammonium by Zostera marina. Mar. Biol. 72: 109-112 https://doi.org/10.1007/BF00396910
  39. Thursby G.B. and Harlin M.M. 1984. Interaction of leaves and roots of Ruppia maritima in the uptake of phosphate, ammonia and nitrate. Mar. Biol. 83: 61-67 https://doi.org/10.1007/BF00393086
  40. Tomasko D.A., Dawes C.J. and Hall M.a. 1996. The effects of anthropogenic nutrient enrichment on turtle grass (Thalassia testudinum) in Sarasota Bay, Florida. Estuaries 19: 448-456 https://doi.org/10.2307/1352462
  41. Udy J.W. and Dennison W.C 1997. Growth and physiological responses of three seagrass species to elevated sediment nutrients in Moreton Bay, Australia. J. Exp. Mar. Bioi. Ecol. 217: 253-277 https://doi.org/10.1016/S0022-0981(97)00060-9
  42. Valiela I. Costa J., Foreman K., Teal J.M., Howes B. and Aubrey D. 1990. Transport of groundwater-borne nutrients from watersheds and their effects on coastal waters. Biogeochem. 10: 177-197 https://doi.org/10.1007/BF00003143
  43. Valiela I., Foreman K., LaMontagne M., Hersh D., Costa J., Peckol P., DeMeo-Anderson B., D'Avazo C, Babione M., Sham C, Brawley J. and Lajtha K. 1992. Couplings of watersheds and coastal waters: sources and consequences of nutrient enrichment in Waquoit Bay, Massachusetts. Estuaries 15: 443-457 https://doi.org/10.2307/1352389

Cited by

  1. Seasonal Changes in the Carbon and Nitrogen Contents of Zostera marina Populations in the Intertidal and Subtidal Zones of the Seomjin Estuary, Korea vol.45, pp.1, 2012, https://doi.org/10.5657/KFAS.2012.0065