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Although seagrasses are relatively abundant, few studies have been conducted on seagrass physiology and
ecology in Korea. Zostera marina is the most abundant seagrass species, widely distributed
throughout all coastal areas of the Korean peninsula. To examine seasonal dynamics and spatial
variations of eelgrass, Zostera marina distributed on the coast of Korea, morphological characteristics,
biomass, tissue nutrient constituents, leaf productivity and environmental factors were monitored
monthly from the eelgrass beds in Kabae Bay and Kosung Bay on the south coast of the Korean
peninsula from June 2001 to June 2002. Eelgrass density, biomass, morphological characteristics,
leaf productivities, and tissue nutrient constituents exhibited clear seasonal variations, and these
seasonal trends reflected seasonal changes in water temperature. Eelgrass shoot density and biomass
at Kabae Bay site showed more obvious seasonal trends than Kosung Bay. No strong seasonality in
Kosung Bay site appeared to be caused by high water temperature (>30°C) during summer months
at this site. Despite differences in nutrient availabilities between two study sites, eelgrass biomass
and leaf productivities were not significantly different between study sites, and this lack of spatial
variations implies that the ambient nutrient availabilities at the present study sites are in excess of
seagrass nutrient demand. Eelgrass tissue N content and sediment pore water DIN concentrations
exhibited reverse relationship at the present study. This reverse relationship suggests in siru nutrient
concentrations are not good indicator of nutrient availabilities, and regeneration and turnover rates
of sediment nutrients are also important factors to determine nutrient availabilities at the site.
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distribution and survival in a certain area.

INTRODUCTION

" Seagrasses are known to achieve high levels of pro-
duction (McRoy and McMillan 1977; Zieman and
Wetzel 1980; Lee and Dunton 1996), and are impor-
tant primary producers in coastal and estuarine eco-
systems. As primary producers, survival, distribution
and production of seagrasses are influenced by under-
water irradiance, water temperature, and inorganic
nutrient availabilities. Insufficient underwater irradiance
leads to rapid decreases in seagrass biomass, pro-
ductivities, depletion of stored metabolic carbon in
plant tissues, and consequently seagrass die-off (Dern-
nison and Alberte 1982; Czerny and Dunton 1995;
Lee and Dunton 1997). Therefore, underwater light
condition is the most important factor for seagrass
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Several seagrass physiological and morphological
characteristics exhibit seasonal variations (Wetzel and
Penhale 1983; Dunton 1994; Lee and Dunton 1996).
Seagrass productivity, biomass, and plant size usually
increase with increasing water temperature during
spring and summer and decrease with falling tem-
perature during fall and winter (Vermaat et al. 1987,
Dunton 1994, Lee and Dunton 1996). In most cases,
seasonal variation of seagrass characteristics seems
to be controlled by water temperature. Since seagrasses
have high productivities, they may need to assimilate
large amounts of inorganic nutrients such as nitrogen
and phosphorus. Thus, nutrient availability in the water
column and sediment pore water plays an important
role in controlling seagrass production. Spatial vari-
ations in seagrass productions are primarily regulated
by in situ nutrient availabilities.



Seasonal Dynamics of the Seagrass Zostera marina on the South Coast of the Korean Peninsula 69

Seagrasses have access to inorganic nutrient sources
in both the sediment and the water column (lizumi
and Hattori 1982; Short and McRoy 1984; Stapel et
al. 1996; Stapel and Hemminga 1997; Terrados and
Williams 1997; Lee and Dunton 1999b). However,
inorganic nutrient in the water column can lead to
reduction of underwater irradiance as a result of epi-
phyte growth and phytoplankton blooms, and con-
sequently seagrass decline (Orth and Moore 1983,
Silberstein et al. 1986; Giesen et al. 1990; Tomasko
and Lapointe 1991). Inorganic nutrients in the sed-
iment pore water enhance seagrass growth and pro-
duction, and have been reported to have no detrimental
effects on seagrass growth (Agawin et al. 1996; Alcoverro
et al. 1997; Udy and Dennison 1997). Therefore, sea-
grass responses to nutrient availability may vary
depending on the nutrient sources. In the present study,
we hypothesized that productivities of seagrass Zostera
marina vary with sediment nutrient availabilities.

Eelgrass, Zostera marina is the most widely dis-
tributed of all seagrasses and dominates the north
temperate oceans of the world (Short er al. 2001).
Z. marina appears at the intertidal and subtidal zones,
where the water depth is usually less than 5 m, and
forms relatively large meadows. Z. marina can be
observed in both muddy and sandy sediments. On
the coasts of the Korean peninsula, most of the sea-
grass area is located on the south coast, and Z. marina

is the most abundant seagrass species, widely dis-
tributed throughout all coastal areas (Lee and Lee
2003). Although abundant seagrass species are dis-
tributed on the coasts of the Korean peninsula, little
study has been conducted on seagrass ecology and
physiology. In this study, eelgrass productivities, tis-
sue nutritional content, and morphological charac-
teristics were examined at two different eelgrass beds
in Kosung Bay and Kabae Bay. Since few ecological
and physiological data exist concerning eelgrass dis-
tributed on the coasts of Korea, this study provides
valuable data on the biology and ecology of eelgrass
in Korea.

MATERIALS AND METHODS
Study sites

The study sites are located in Kosung Bay and
Kabae Bay, Koje Island on the south coast of the
Korean peninsula (Fig. 1). This study was conducted
in monotypic meadows of Zostera marina. Eco-phys-
iological characteristics of Z. marina and physical
and chemical parameters of the study sites were mea-
sured every month from June 2001 to June 2002. The
Kosung Bay site is characterized by low sand content
in the sediment, but sediments at the Kabae Bay site
have higher sand content.
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Physical and chemical parameter measurements

Water temperature and salinity were measured
every month during the experimental periods. Four
replicate surface water samples for determination of
water column nutrients were collected every month.
Dissolved inorganic nitrogen (DIN, NH,*, NO;+NO;),
and PO3~ concentrations were determined colorimet-
rically according to Parsons et al. (1984). Concen-
trations of NO3; +NO; were determined after running
through a column containing copper coated cadmium,
which reduces NO; to NO,. To measure sediment pore
water nutrient concentrations, 6—10 replicate sedi-
ment samples were collected randomly from each site
to a sediment depth of about 13 cm with a syringe
corer. Samples were placed on ice and frozen pending
lab analyses. Sediment pore water was obtained by
centrifugation (5000xg for 15 min) and used for deter-
mination of pore water DIN and PO;” concentrations.
Concentrations of pore water DIN and POj” were
determined after dilution (1:5; v/v) with low nutrient
seawater. To determine sediment organic content,
oven-dried sediments were burned at 550°C for 2h,
and sediment organic content was calculated from the
loss of sediment weight. Shells were removed from
the sediments before combustion.

Biological measurements

Plant morphology, shoot density, biomass, and leaf
production were measured every month. Ten to fif-
teen mature terminal eelgrass shoots were collected
individually at the sampling sites to measure shoot
morphology. Sheath length was measured from the
meristem to the top of the sheath. Shoot height was
measured from the meristem to the tip of the longest
leaf, and the width of the longest leaf was measured.
All shoots and below-ground tissues inside a ran-
domly thrown quadrat (0.35x0.35 m; n=4) were col-
lected for biomass and density measurements. Shoot
density was estimated by counting the number of
shoots in the quadrat. Collected samples were thoroughly
cleaned of epiphytes and sediment, separated into
above-  (blade+sheath) and below-ground tissues
(root+rhizome), and dried at 60°C to a constant weight.

Leaf production rates were measured using a mod-
ified blade marking technique (Zieman 1974; Kentula
and MclIntire 1986; Lee and Dunton 1996). Ten to fifteen
randomly chosen shoots from each site were marked the
bundle sheath with a hypodermic needle and then har-
vested after a period of 2 to 4 weeks. Leaf material was

separated into leaf tissue produced before and after mark-
ing and dried at 60°C to a constant weight. The leaf pro-
duction rate per shoot was determined by dividing the
dry weight of new leaf tissue produced after marking
by the number of days since marking.

Plant tissue constituent analyses

The second and third youngest leaves and rhizome
and root tissues from the first to sixth youngest nodes
were used to determine plant tissue carbon (C) and
nitrogen (N) content. The dried tissues were ground
using mortars and pestles. Approximately 2-3 mg of
ground tissue was placed into a tin boat for deter-
mination of eelgrass tissue C and N content using a CHN
elemental analyzer (Flash EA1112), and C:N molar
ratios were calculated.

Statistics

All values are reported as means+1 SE. Statistical
analyses were performed on a microcomputer using
a general linear model procedure (SAS). Data were
tested for normality and homogeneity of variance to
meet the assumptions of parametric statistics. Differences
in water column and pore water nutrient concen-
trations, plant morphological characteristics, shoot
density, biomass, leaf productivities and tissue nutri-
ent constituents among sampling time and between
sampling sites were tested for significance using a
2-way ANOVA, with time as a block. When a sig-
nificant difference among variables was observed, the
means were analyzed by a Tukey multiple compar-
ison test to determine where the significant differ-
ences occurred among variables.

RESULTS
Water temperature and salinity

Water temperature at the study sites in Kabae Bay
and Kosung Bay exhibited obvious seasonal varia-
tions (Fig. 2). Water temperature at Kabac Bay ranged
from 9.6°C in February to 25.8°C in late August, while
water temperature at Kosung Bay ranged from 6.0°C
in February to 31.8°C in late July. Summer tem-
peratures were higher at Kosung Bay site than Kabae
Bay, while water temperatures during winter were
lower at Kosung Bay. Salinity did not show clear
seasonal trend at both study sites (Fig. 3). Salinity
was slightly higher at Kabae Bay site than Kosung
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Fig. 2. Water temperature at eelgrass beds in Kabae Bay and Fig. 3. Salinity at eelgrass beds in Kabae Bay and Kosung Bay.
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Nutrient conditions in the water column and sediments
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and the NHj concentrations at Kabae Bay site were
usually less than 3 uM during the experimental period
(Fig. 4A, B). Water column NH; concentrations var-
ied significantly (P<0.001) with sampling time at
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trends. Water column PO} concentrations were not
significantly (P=0.26) different between the study
sites, and mean concentrations were about 1.5 mM
at both sites (Fig. 4C, D). At Kabae Bay, water col-
umn PO;” was higher during winter and lower during
summer and fall, while the POj concentrations at
Kosung Bay were highly fluctuated, and showed no
seasonal trends. Nitrate + nitrite concentrations in water
column were significantly (P<0.001) higher at Kosung
Bay site than Kabae Bay statistically (Fig. 4E, F). How-
ever, after raining seasons, the water column NO; +NO,
concentrations were similar at two study sites.
Sediment pore water NH; concentrations were sig-
nificantly (P<0.001) higher at Kabae Bay (344 uM)
than Kosung Bay (211 uM; Fig. 5A, B). Sediment
NH; concentrations significantly (P<0.001) changed
with sampling time at both sites, but did not show
clear seasonal trends. Sediment pore water PO, con-
centrations were not significantly different between
sampling sites, and did not show seasonality at both
sites (Fig. 5C, D). Sediment pore water NO; +NO;
concentrations were significantly (P<0.001) higher at
Kabae Bay than Kosung Bay (Fig. SE, F). Mean NO;
+NO; concentration was 6.7 UM at Kabae Bay site,

MJJASONDUJUFMAMUIJJ

Kosung Bay sites from June 2001
2002 to June 2002.

and was 1.2 uM at Kosung Bay. Sediment pore water
NOj; +NO; concentrations did not show significant (P
=(0.06, and 0.24, respectively) temporal variations at
Kabae Bay and Kosung Bay sites. Sediment organic
content was significantly (P<0.001) higher at Kosung
Bay site than Kabae Bay (Fig. 6). Sediment organic
content showed significant (P<0.001) temporal vari-
ations, but no clear seasonality.

Shoot morphology

Shoot height was significantly (P<0.001) taller at Kabae
Bay site (115.7 cm) than Kosung Bay (103.6 cm; Fig.
7A, B). Shoot height showed significant (P<0.001)
seasonal variations at both study sites. Shoot height
was least during winter, and greatest during summer.
Sheath length was also significantly (P<0.001) longer
at Kabae Bay site than Kosung Bay (Fig. 7C, D),
and showed significant (P<0.001) seasonal variations.
Blade width, however, was not significantly (P=0.058)
different between two study sites (Fig. 7E, F). Blade
width at both study sites showed significant (P<0.001)
seasonal trends, decreasing during the fall and winter,
and increasing during the spring and summer.
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Fig. 6. Sediment organic content at Kabae Bay and Kosung
Bay sites.

Shoot density, biomass and production
Eelgrass shoot density was significantly (P=0.019)

higher at Kosung Bay site (98.1 shoots m™?) than Kabae
Bay (80.1 shoots m™; Fig. 8). Shoot density at Kabae
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Fig. 8. Seasonal changes in eelgrass shoot density at Kabae
Bay and Kosung Bay sites from June 2001 to June 2002.

Bay exhibited obvious seasonal variation, decreasing
during fall and winter, and increasing during spring
and summer (Fig. 8A). Shoot density at Kosung Bay
site, however, showed bimodal peaks, peaks in late
fall and late spring (Fig. 8B).
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eelgrass were not significantly (P=0.77, 0.79, and 0.73,
respectively) different between sampling sites (Fig. 9).
Eelgrass biomass, however, varied significantly (P<0.01)
with sampling time, highest in summer and lowest
in winter at both study sites. Biomass at Kabae Bay
site exhibited more obvious seasonality than that at
Kosung Bay site. Leaf productivities significantly (P
<0.001) varied with sampling stations (Fig. 10). Leaf
productivities were significantly higher at Kabae Bay
site than at Kosung Bay site. Leaf productivities also var-
ied significantly (P<0.001) with sampling time, lowest
during winter and highest during summer periods.

Plant tissue constituents

The C content of leaf tissues from Kabae Bay site
(32.9%) was significantly (P<0.001) higher than that
from Kosung Bay site (Fig. 11A, B). Leaf C content
from Kabae Bay site was highest in late August
(37.3%) and lowest in November (28.3%), while the
C content from Kosung Bay site was highest in Jan-
nary (36.4%) and lowest in December (27.8%). Eel-
grass leaf tissue C content did not show clear seasonal
variations at both study sites. The N content of leaf
tissue from Kabae Bay site (2.0%) was significantly
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Fig. 10. Seasonal changes in eelgrass leaf productivities at
Kabae Bay and Kosung Bay from June 2001 to April 2002

(P<0.001) lower than that from Kosung Bay site
(2.58%; Fig. 11C, D). Leaf tissue N content from
Kabae Bay was lowest in July (1.48%) and highest
in February (2.69%), while the N content from Kosung
Bay was lowest in April (1.79%) and highest in Jan-
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uary (3.61%). Leaf N content was lowest during high
growing season and highest during low growing sea-
son. The C:N ratios of eelgrass leaf tissues were sig-
nificantly (P<0.001) higher at Kabae Bay site (20.3)
than Kosung Bay (15.4; Fig. 11E, F). The C:N ratios
of leaf tissues from both study sites exhibited clear
seasonal variations, highest during summer and low-
est during winter.

The C content of rhizome tissues was also sig-
nificantly (P<0.001) higher in Kabae Bay site (32.6%)
than Kosung Bay (31.1%; Fig. 12A, B). Rhizome tis-
sue C content showed more clear seasonal variations
than the content of leaf tissues. The C content of
rhizome tissues was highest in August at Kabae Bay
site (36.4%), and in July at Kosung Bay (35.3%) and
lowest in February at both Kabae Bay and Kosung
Bay (27.2%, and 25.4%, respectively). The N content
of eelgrass rhizome tissues from Kosung Bay site
(1.52%) was significantly (P<0.001) higher the con-
tent from Kabae Bay (1.10%; Fig. 12C, D). Rhizome
tissue N content also showed more obvious seasonal
variations than leaf tissues at both study sites, highest
in November (1.74%, and 2.78% at Kabae Bay and
Kosung Bay, respectively) and lowest in April (0.52%,

and 0.66%). The C:N ratios of eelgrass rhizome tis-
sues were significantly (P<0.001) higher at Kabae Bay
site (39.1) than Kosung Bay (28.8; Fig. 12E, F). The
C:N ratios of rhizome tissues also showed more obvi-
ous seasonality than leaf tissues. The ratios were
highest during the high growing seasons and lowest
during low growing seasons.

DISCUSSION

Temporal variations

Eelgrass Zostera marina at the present study sites
exhibited seasonal trends in plant morphology, bio-
mass, productivities, and tissue nutrient constituents.
Seasonal variations in seagrass characteristics have
been reported by several authors (Orth and Moore
1986; Macauley er al. 1988; Dunton 1990; Thom
1990; Lee and Dunton 1996; Vermaat and Verhagen
1996), and were attributed to changes in underwater
irradiance and temperature. Water temperature has
been considered as a major factor regulating seagrass
growth and production (Phillips er al. 1983; Lee and
Dunton 1996). In the present study, water temper-
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ature showed obvious seasonal trends at both study
sites, but the strength of seasonality was different
between two study sites. Water temperature during
summer was higher at Kosung Bay site than Kabae
Bay, but temperature during winter was higher at
Kabae Bay site. This pattern of water temperature
implies that Kabae Bay site are affected by ocean
more than Kosung Bay site, which showed stronger
seasonality of water temperature.

It appears that the patterns of water temperature
were reflected in seasonal changes in eelgrass den-
sity, biomass and productivities at study sites. Shoot
density in Kosung Bay site showed bimodal peaks,
and the density decreased during summer period
when water temperature exceeded 30°C. An extensive
eclgrass leaf loss has been reported in July and
August when water temperature approached 30°C
(Orth and Moore 1986). Additionally, rapid increases
in eelgrass leaf respiration also have been reported
at high water temperature of over 30°C (Biebl and
McRoy 1971; Drew 1979; Bulthuis 1983; Marsh et al.
1986). Marsh et al. (1986) have been demonstrated
that even short-term leaf exposure to high temper-
ature of >30°C reduces net photosynthesis, increases

respiration, and leads to a reduction in P:R ratios in
the temperate seagrass, Zostera marina. Therefore,
production and biomass of Z. marina can be limited
by seasonal high water temperature and could be sig-
nificantly limited by even short term or episodic water
temperature elevation (Wetzel and Penhale 1983;
Evans et al. 1986; Marsh et al. 1986). Decrease in
shoot density at Kosung Bay site during summer
period is probably due to high water temperature (>
30°C) during this season.

Biomass at Kabae Bay site exhibited more obvious
seasonal trend than Kosung Bay in the present study.
At Kabae Bay site, biomass during summer month
was significantly higher than spring or fall, but bio-
mass during summer month did not increase at
Kosung Bay site. Therefore, biomass was similar dur-
ing spring, summer, and fall at Kosung Bay site, and
this temporal similarity probably results in no strong
seasonality in biomass at this site. This seasonal bio-
mass pattern also seems to reflect seasonal trends of
water temperature. As a result of high water tem-
perature during summer months at Kosung Bay site,
leaf productivities decreased during these months,
and leaf productivities were highest during spring at
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this site.
Spatial variations

Study site in Kabae Bay has higher sand content
and lower organic matter in sediments than Kosung
Bay site. However, sediment pore water DIN con-
centrations were significantly higher at Kabae Bay
site than Kosung Bay, which has muddy sediments
and higher sediment organic content. Nutrient avail-
ability in muddy substratum is usually higher than
that in sandy sediments (Short 1983, 1987). In the
present study, however, Kabae Bay site, which has
sandy sediment, had higher pore water DIN con-
centrations. Higher pore water NH} conditions in low
sediment organic site are unusual, but higher nitrate
concentrations in Kabae Bay than Kosung Bay site
can be explained by higher ammonium and oxygen
concentrations in Kabae Bay site. Sandy sediments
are more easily oxidized than muddy sediments.
Nitrification i1s the oxidation of ammonium to nitrate,
and it occurs only under aerobic conditions. There-
fore, in situ nitrification rates depend on ammonium
and oxygen concentrations. Since Kabae Bay site has
sandy sediments and high ammonium concentrations,
nitrification rates probably were high, and conse-
quently high nitrate concentrations in this site. Water
column nutrient concentrations were usually higher
at Kosung Bay site than Kabae Bay. High peaks of
water column nutrient concentrations at Kosung Bay
appeared occasionally, and coincided with rainfalls.
Rain-water inflow into Kosung Bay probably caused
peaks of water column nutrient concentrations in this
study site.

Seagrass growth, biomass, morphology, and tissue
nutrient constituents are strongly linked to available
nutrient resources (Burkholder et al. 1992, 1994,
Short et al. 1995; Udy and Dennison 1997; Udy et al.
1999). Strong correlation between sediment N avail-
ability and leaf morphology of eelgrass Zostera marina
has been reported (Short 1983). Eelgrass shoots char-
acterized by short and narrow leaves grew in low
N conditions, while shoots exhibiting long and wide
leaves were found in high N areas. Tissue nutrient
constituents and plant morphological parameters reflect
the nutrient regime experienced by the seagrass (Lee
and Dunton 1999a, 2000). Shoot height and sheath
length were significantly longer at Kabae Bay site
than Kosung Bay, but blade width was not signif-
icantly different between two study sites. Differences
in shoot height and sheath length between two study

sites probably were not caused by differences in
nutrient availabilities between sites. The differences
appeared to be due to differences in other physical
parameters such as water depths or strength of cur-
rents between the study sites.

Despite differences in nutrient concentrations between
study sites, eelgrass biomass and leaf productivities
were not significantly different between two study
sites. A similar lack of changes in seagrass biomass,
density, and production in response to changes in
nutrient availabilities has been reported from several
seagrass beds (Bulthuis and Woelkerling 1981; Den-
nison er al. 1987; Lee and Dunton 2000). They dem-
onstrated that the ambient nutrient level in the study
areas provided an adequate reserve of nutrients for
seagrass growth. No significant difference in eelgrass
biomass and productivities between two sites of the
present study implies that the ambient nutrient avail-
abilities at the study sites are in excess of seagrass
nutrient demand.

Eelgrass tissue N content and sediment pore water
DIN concentrations exhibited reverse relationship at
the present study sites. Sediment DIN concentrations
were significantly higher at Kabae Bay site than
Kosung Bay, but eelgrass leaf and rhizome tissue N
content was significantly higher at Kosung Bay site.
This reverse relationship between in situ DIN con-
centrations and eelgrass tissue N content suggests
that in situ nutrient concentrations do not well rep-
resent nutrient availabilities at the area. Sediment
nutrient concentrations can be indicative of nutrient
availabilities for seagrass growth in some areas, but
regeneration of sediment nutrient and turnover rates
of sediment nutrient pool are also important factors
that determine nutrient availabilities at the site (Jgr-
gensen 1982). In the present study, sediment organic
matter was significantly higher at Kosung Bay site
than Kabae Bay. Therefore, nutrient regeneration rates
were probably higher at Kosung Bay site than Kabae
Bay, and higher tissue N content at Kosung Bay site
reflected the higher nutrient regeneration at this site.
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