• Title/Summary/Keyword: tissue binding

Search Result 443, Processing Time 0.022 seconds

Pinus Densiflora Bark Extract (PineXol) Decreases Adiposity in Mice by Down-Regulation of Hepatic De Novo Lipogenesis and Adipogenesis in White Adipose Tissue

  • Ahn, Hyemyoung;Go, Gwang-woong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.660-667
    • /
    • 2017
  • PineXol, extracted from Korean red pine bark, has beneficial effects, such as antioxidant, antiinflammatory, and antilipogenic activities in vitro. We tested the hypothesis that PineXol supplementation could have anti-obesity effects on mice fed a high-fat diet (HFD). Four-week-old male C57BL/6 mice were fed normal chow (18% kcal from fat) or a HFD (60% kcal from fat). HFD-fed animals were also subjected to PineXol treatment at a dose of 10 or 50 mg/kg body weight (BW) (PX10 or PX50, respectively) body weight. The body weight and body fat mass in the PX50 group were statistically lower than those in the HFD group (p < 0.05 and p < 0.001, respectively). The concentration of hepatic triglycerides, total cholesterol, and low-density lipoprotein cholesterol were reduced in the PX50 group compared with the HFD group (p < 0.01). Acetyl CoA carboxylase (p < 0.01), elongase of very long chain fatty acids 6 (p < 0.01), stearoyl CoA desaturase 1 (p < 0.05), microsomal triglyceride transfer protein (p < 0.01), and sterol regulatory element-binding protein 1 (p < 0.05) were significantly decreased in the PX50 group compared with that in the HFD group. In white adipose tissue, CCAAT-enhancer-binding protein alpha (p < 0.05), peroxisome proliferator-activated receptor gamma (p < 0.001), and perilipin (p < 0.01) were decreased in the PX50 group compared with those in the HFD group. Therefore, the current study implies the potential of PineXol for the prevention and/or amelioration of obesity, in part by inhibition of both hepatic lipid synthesis and adipogenesis in white adipose tissue.

Engineering the Cellular Protein Secretory Pathway for Enhancement of Recombinant Tissue Plasminogen Activator Expression in Chinese Hamster Ovary Cells: Effects of CERT and XBP1s Genes

  • Rahimpour, Azam;Vaziri, Behrouz;Moazzami, Reza;Nematollahi, Leila;Barkhordari, Farzaneh;Kokabee, Leila;Adeli, Ahmad;Mahboudi, Fereidoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1116-1122
    • /
    • 2013
  • Cell line development is the most critical and also the most time-consuming step in the production of recombinant therapeutic proteins. In this regard, a variety of vector and cell engineering strategies have been developed for generating high-producing mammalian cells; however, the cell line engineering approach seems to show various results on different recombinant protein producer cells. In order to improve the secretory capacity of a recombinant tissue plasminogen activator (t-PA)-producing Chinese hamster ovary (CHO) cell line, we developed cell line engineering approaches based on the ceramide transfer protein (CERT) and X-box binding protein 1 (XBP1) genes. For this purpose, CERT S132A, a mutant form of CERT that is resistant to phosphorylation, and XBP1s were overexpressed in a recombinant t-PA-producing CHO cell line. Overexpression of CERT S132A increased the specific productivity of t-PA-producing CHO cells up to 35%. In contrast, the heterologous expression of XBP1s did not affect the t-PA expression rate. Our results suggest that CERT-S132A-based secretion engineering could be an effective strategy for enhancing recombinant t-PA production in CHO cells.

Transforming Growth Factor-β-Induced RBFOX3 Inhibition Promotes Epithelial-Mesenchymal Transition of Lung Cancer Cells

  • Kim, Yong-Eun;Kim, Jong Ok;Park, Ki-Sun;Won, Minho;Kim, Kyoon Eon;Kim, Kee K.
    • Molecules and Cells
    • /
    • v.39 no.8
    • /
    • pp.625-630
    • /
    • 2016
  • The RNA-binding protein Rbfox3 is a well-known splicing regulator that is used as a marker for post-mitotic neurons in various vertebrate species. Although recent studies indicate a variable expression of Rbfox3 in non-neuronal tissues, including lung tissue, its cellular function in lung cancer remains largely unknown. Here, we report that the number of RBFOX3-positive cells in tumorous lung tissue is lower than that in normal lung tissue. As the transforming growth factor-${\beta}$ (TGF-${\beta}$) signaling pathway is important in cancer progression, we investigated its role in RBFOX3 expression in A549 lung adenocarcinoma cells. TGF-${\beta}1$ treatment inhibited RBFOX3 expression at the transcriptional level. Further, RBFOX3 depletion led to a change in the expression levels of a subset of proteins related to epithelial-mesenchymal transition (EMT), such as E-cadherin and Claudin-1, during TGF-${\beta}1$-induced EMT. In immunofluorescence microscopic analysis, mesenchymal morphology was more prominent in RBFOX3-depleted cells than in control cells. These findings show that TGF-${\beta}$-induced RBFOX3 inhibition plays an important role in EMT and propose a novel role for RBFOX3 in cancer progression.

Members of the ran family of stress-inducible small GTP-binding proteins are differentially regulated in sweetpotato plants

  • Kim, Young-Hwa;Huh, Gyung Hye
    • Journal of Plant Biotechnology
    • /
    • v.40 no.1
    • /
    • pp.9-17
    • /
    • 2013
  • Ran is a small GTP-binding protein that binds and subsequently hydrolyzes GTP. The functions of Ran in nuclear transport and mitotic progression are well conserved in plants and animals. In animal cells, stress treatments cause Ran relocalization and slowing of nuclear transport, but the role of Ran proteins in plant cells exposed to stress is still unclear. We have therefore compared Ran genes from three EST libraries construed from different cell types of sweetpotato and the distribution pattern of Ran ESTs differed according to cell type. We further characterized two IbRan genes. IbRan1 is a specific EST to the suspension cells and leaf libraries, and IbRan2 is specific EST to the root library. IbRan1 showed 94.6 % identity with IbRan2 at the amino acid level, but the C-terminal region of IbRan1 differed from that of IbRan2. These two genes showed tissue-specific differential regulation in wounded tissues. Chilling stress induced a similar expression pattern in both IbRan genes in the leaves and petioles, but they were differently regulated in the roots. Hydrogen peroxide treatment highly stimulated IbRan2 mRNA expression in the leaves and petioles, but had no significant effect on IbRan1 gene expression. These results showed that the transcription of these two IbRan genes responds differentially to abiotic stresses and that they are subjected to tissue-specific regulation. Plant Ran-type small G-proteins are a multigenic family, and the characterization of each Ran genes under various environmental stresses will contribute toward our understanding of the distinctive function of each plant Ran isoform.

Propyl Gallate Inhibits Adipogenesis by Stimulating Extracellular Signal-Related Kinases in Human Adipose Tissue-Derived Mesenchymal Stem Cells

  • Lee, Jeung-Eun;Kim, Jung-Min;Jang, Hyun-Jun;Lim, Se-Young;Choi, Seon-Jeong;Lee, Nan-Hee;Suh, Pann-Ghill;Choi, Ung-Kyu
    • Molecules and Cells
    • /
    • v.38 no.4
    • /
    • pp.336-342
    • /
    • 2015
  • Propyl gallate (PG) used as an additive in various foods has antioxidant and anti-inflammatory effects. Although the functional roles of PG in various cell types are well characterized, it is unknown whether PG has effect on stem cell differentiation. In this study, we demonstrated that PG could inhibit adipogenic differentiation in human adipose tissue-derived mesenchymal stem cells (hAMSCs) by decreasing the accumulation of intracellular lipid droplets. In addition, PG significantly reduced the expression of adipocyte-specific markers including peroxisome proliferator-activated receptor-${\gamma}$ (PPAR-${\gamma}$), CCAAT enhancer binding protein-${\alpha}$ (C/EBP-${\alpha}$), lipoprotein lipase (LPL), and adipocyte fatty acid-binding protein 2 (aP2). PG inhibited adipogenesis in hAMSCs through extracellular regulated kinase (ERK) pathway. Decreased adipogenesis following PG treatment was recovered in response to ERK blocking. Taken together, these results suggest a novel effect of PG on adipocyte differentiation in hAMSCs, supporting a negative role of ERK1/2 pathway in adipogenic differentiation.

Effect of Chlorella on Metallothionein Synthesis and Binding Capacity of Cadmium in Cadmium Poisoned Rat Liver and Kidney

  • Hwang Yoo-Kyeong;Choi Hyun-Jin;Nan Meng;Yoo Jai-Du;Kim Yong-Ho
    • Biomedical Science Letters
    • /
    • v.12 no.1
    • /
    • pp.23-27
    • /
    • 2006
  • The rate of metallothionein synthesis on cadmium-poisoned rats reflects the level of toxicity, and also it reduces the toxicity which is caused by the uptake of cadmium. Chlorella supplementation in the diets of the cadmium-poisoned rats decreased the concentration of cadmium in blood and urine compared with the control group. Although the liver and kidneys of rats are major target organs of cadmium and coherence of metallothionein and cadmium, no previous study has determined the correlation between the rate of metallothionein synthesis in the liver and kidneys of rats and dietary supplementation of chlorella with cadmium uptake. This study analyzed total metallothionein level on the tissue of the liver and kidneys, the concentration of cadmium bound to the metallothionein, and the total concentration of cadmium on the tissue of the liver and kidneys after dietary supplementation with 1%, 5%, and 10% dried chlorella and 40 ppm of cadmium to 46 male SD rats (mean weight: $150\pm20\;g$) for 4 weeks. According to the data analysis of the total rate of metallothionein synthesis in the liver and kidneys, the group of SD rats on the supplementation with 1% chlorella and 40 ppm of cadmium showed a rate of $93.2\pm8.9\;ng/g$, a significant decrease of 58.8% compared to that of the control group of SD rats on the supplementation with cadmium only, which showed a rate of $227.3\pm32.5 ng/g$ (P=0.0001). In contrast, no significant difference was observed through the changing of chlorella concentrations between 5% and 10% chlorella supplementation with cadmium. The group supplemented with 1% or greater chlorella levels represented a greater decrease in the total cadmium concentration of the kidney and liver tissues, the amount of total metallothionein synthesis, the amount of metallothionein with binding to cadmium, and the concentration of free cadmium without binding to metallothionein. Consequently, the supplementation of 1% and 5% chlorella was effective in reducing the synthesis of metallothionein for cadmium uptake, but increased the rate of binding of cadmium to metallothionein.

  • PDF

Effect of Electrolytes on the Saturable Binding of Morphine in Rat Brain Tissue (백서(白鼠) 뇌조직(腦組織)에서 Morphine의 Saturable Binding에 미치는 전해질(電解質)의 영향(影響))

  • Ko, Bok-Hyun;Chae, Soo-Wan;Cho, Kyu-Park
    • The Korean Journal of Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.33-44
    • /
    • 1982
  • The binding in vitro of an opiate agonist, $(^3H)-morphine$, was studied using rat brain slices which were incubated in the modified Krebs-Henseleit bicarbonate buffer solution containing various concentrations of electrolytes with or without morphine, naloxone or morphine+naloxone at $4^{\circ}C$ for 24 hours. The binding of $(^3H)-morphine$ may be seperated into two component; one a saturable binding and the other nonsaturable. The saturable binding may be calculated from the differences in binding observed in the absence and presence of high concentration of morphine. The maximal saturable binding and $K_D$ value in the naive preparations were $0.32{\pm}0.02\;pmole/mg$ protein and $0.75{\pm}0.07\;nM$ respectively. The saturable binding of $(^3H)-morphine$ was significantly increased by low temperature-treatment, while $K_D$ value was not changed. Morphine in the incubation media significantly increased the saturable binding of $(^3H)-morphine$ and $K_D$ value. Naloxone also increased the maximal saturable binding of $(^3H)-morphine$ and $K_D$ value of the drug. Decrease of $K^+\;and\;Mg^{++}$, and addition of $Mn^{++}$ in the incubation media significantly increased the saturable binding of $(^3H)-morphine$, but decrease of $Na^+$and increase of $Ca^{++}$ in the incubation media did not influence the binding. The increment of the saturable binding of $(^3H)-morphine$ by nonlabeled morphine in the incubation media was notaffected by decrease of $Na^+,\;K^+\;or\;Mg^{++}$, or addition of $Mn^{++}$ into the incubation media, but was inhibited by increase of $Ca^{++}$ in the incubation media, while the increment of the saturable binding of $(^3H)-morphine$ was net observed by decrease of $Na^+,\;K^+\;or\;Mg^{++}$, or increase of $Ca^{++}$ in the incubation media. The above results indicate that change of opiate binding sites in quality, i.e. affinity, and quantity, i.e. number of binding sites, may occur by low temperature-treatment in the absence and presence of morphine or naloxone and that electrolytes play role of the changes of opiate binding sites.

  • PDF

Identification of MFGE8 in mesenchymal stem cell secretome as an anti-fibrotic factor in liver fibrosis

  • Jang, Yu Jin;An, Su Yeon;Kim, Jong-Hoon
    • BMB Reports
    • /
    • v.50 no.2
    • /
    • pp.58-59
    • /
    • 2017
  • The beneficial paracrine roles of mesenchymal stem cells (MSCs) in tissue repair have potential in therapeutic strategies against various diseases. However, the key therapeutic factors secreted from MSCs and their exact molecular mechanisms of action remain unclear. In this study, the cell-free secretome of umbilical cord-derived MSCs showed significant anti-fibrotic activity in the mouse models of liver fibrosis. The involved action mechanism was the regulation of hepatic stellate cell activation by direct inhibition of the $TGF{\beta}$/Smad-signaling. Antagonizing the milk fat globule-EGF factor 8 (MFGE8) activity blocked the anti-fibrotic effects of the MSC secretome in vitro and in vivo. Moreover, MFGE8 was secreted by MSCs from the umbilical cord as well as other tissues, including teeth and bone marrow. Administration of recombinant MFGE8 protein alone had a significant anti-fibrotic effect in two different models of liver fibrosis. Additionally, MFGE8 downregulated $TGF{\beta}$ type I receptor expression by binding to ${\alpha}v{\beta}3$ integrin on HSCs. These findings revealed the potential role of MFGE8 in modulating $TGF{\beta}$-signaling. Thus, MFGE8 could serve as a novel therapeutic agent for liver fibrosis.

$17{\beta}$-estradiol Represses White Adipose Tissue Metabolism by Inhibiting $PPAR{\gamma}$ in High Fat Diet-induced Obese Female Ovariectomized Mice

  • Yoon, Mi-Chung;Jeong, Sun-Hyo
    • Biomedical Science Letters
    • /
    • v.15 no.3
    • /
    • pp.171-177
    • /
    • 2009
  • This study investigated whether increased adiposity is prevented by estrogen replacement in female ovariectomized (OVX) C57BL/6J mice, an animal model of human menopause and whether these metabolic changes reflect the inhibitory action of estrogen on peroxisome proliferator-activated receptor $\gamma$ ($PPAR{\gamma}$)-regulated gene expression. Treatment of $17{\beta}$-estradiol for the last one week of the experiment decreased high fat diet-induced body weight gain and white adipose tissue mass compared to OVX control mice. Histological analysis showed that administration of $17{\beta}$-estradiol to mice decreased the size of adipocytes in parametrial adipose tissue versus OVX control mice. In addition, $17{\beta}$-estradiol reduced the adipose expression of $PPAR{\gamma}$ as well as $PPAR{\gamma}$ target genes such as adipocyte fatty acid binding protein and tumor necrosis factor $\alpha$. These results suggest that $17{\beta}$-estradiol may inhibit adiposity through reducing the $PPAR{\gamma}$ activities in female OVX mice.

  • PDF

Administration of Phytoceramide Enhances Memory and Up-regulates the Expression of pCREB and BDNF in Hippocampus of Mice

  • Lee, Yeonju;Kim, Jieun;Jang, Soyong;Oh, Seikwan
    • Biomolecules & Therapeutics
    • /
    • v.21 no.3
    • /
    • pp.229-233
    • /
    • 2013
  • This study was aimed at investigating the possible effects of phytoceramide (Pcer) on learning and memory and their underlying mechanisms. Phytoceramide was orally administered to ICR mice for 7 days. Memory performances were assessed using the passive avoidance test and Y-maze task. The expressions of phosphorylated cAMP response element binding protein (pCREB), brain-derived neurotrophic factor (BDNF) were measured with immunoblot. The incorporation of 5-bromo-2-deoxyuridine (BrdU) in hippocampal regions was investigated by using immunohistochemical methods. Treatment of Pcer enhanced cognitive performances in the passive avoidance test and Y-maze task. Immunoblotting studies revealed that the phosphorylated CREB and BDNF were significantly increased on hippocampus in the Pcer-treated mice. Immunohistochemical studies showed that the number of immunopositive cells to BrdU was significantly increased in the hippocampal dentate gyrus regions after Pcer-treatment for 7 days. These results suggest that Pcer contribute to enhancing memory and BDNF expression and it could be secondary to the elevation of neurogenesis.