• Title/Summary/Keyword: timing receiver

Search Result 251, Processing Time 0.022 seconds

Design of the Upstream Cable Modem for Symmetric Multimedia Services over HFC Networks (HFC망 기반 대칭형 멀티미디어 서비스를 위한 상향 채널 케이블 모뎀 설계)

  • Cho, Byung Hak
    • Journal of Broadcast Engineering
    • /
    • v.10 no.3
    • /
    • pp.401-412
    • /
    • 2005
  • We propose and design the algorithms of symbol timing recovery, carrier recovery, and equalization for the receiver of S-DMT cable modem, which supports more channels and better symmetric mutimedia services over HFC network. We evaluate the performance of the concatenated entire receiving system of 16QAM, 64QAM in the mixed noise channel of AWGN, ISI and impulse. The result of evaluation shows those algorithms work correctly and designed S-DMT receiver has good performance. We also verify the designed system has excellent immunity against impulse noise channel of practical Cable TV networks by the result of simulation with the parameters of impulse internal $\varepsilon$ and noise power $\gamma^{k}$.

Developing GPS Code Multipath Grid Map (CMGM) of Domestic Reference Station (국내 기준국의 GPS 코드 다중경로오차 격자지도 생성)

  • Gyu Min Kim;Gimin Kim;Chandeok Park
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.85-92
    • /
    • 2024
  • This study develops a Global Positioning System (GPS) Code Multipath Grid Map (CMGM) of each individual domestic reference station from the extracted code multipath of measurement data. Multipath corresponds to signal reflection/refraction caused by obstacles around the receiver antenna, and it is a major source of error that cannot be eliminated by differencing. From the receiver-independent exchange format (RINEX) data for two days, the associated code multipath of a satellite tracking arc is extracted. These code multipath data go through bias correction and interpolation to yield the CMGM with respect to the azimuth and elevation angles. The effect of the CMGM on multipath mitigation is then quantitatively analyzed to improve the Root Mean Square (RMS) of averaged pseudo multipath. Furthermore, the single point positioning (SPP) accuracy is analyzed in terms of the RMS of the horizontal and vertical errors. During two weeks in February 2023, the RMSs of the averaged pseudo multipath for five reference stations decreased by about 40% on average after CMGM application. Also, the SPP accuracies increased by about 7% for horizontal errors and about 10% for vertical errors on average after CMGM application. The overall quantitative analysis indicates that the proposed approach will reduce the convergence time of Differential Global Navigation Satellite System (DGNSS), Real-Time Kinematic (RTK), and Precise Point Positioning (PPP)-RTK correction information in real-time to use measurement data whose code multipath is corrected and mitigated by the CMGM.

8VSB Equalization Techniques for the Performance Improvement of Indoor Reception (실내 수신 성능 개선을 위한 8VSB의 등화 기법)

  • 김대진;박성우;이종주;전희영;이동두;박재홍
    • Journal of Broadcast Engineering
    • /
    • v.4 no.2
    • /
    • pp.103-118
    • /
    • 1999
  • This paper analyzes the performance of symbol timing recovery and equalizer in 8VSB digital terrestrial TV receiver under various multipath signals and proposes equalization techniques which improve indoor reception performance. Data segment sync is used for symbol timing recovery and timing offset is measured for echoes of various delays and amplitudes by using symbol timing detection filter whose pattern is +1. +1. -1. and -1. Measured timing offsets were below 10% for long echoes with more than 5 symbol delay and above 30% for short echoes with around 1 symbol delay. Indoor reception is always more challenging than outdoor reception due to lower signal strength. large and short multipaths. and moving interfering objects. So it is considered to use FSE (Fractionally Spaced Equalizer) which is very robust to timing offset and blind equalizer which can update equalizer tap coefficients even by information data. We compare the performance of conventional DFE (Decision Feedback Equalizer) and FSE-DFE using LMS algorithm and Stop and Go algorithm for the indoor reception. Experiments reveals FSE has excellent performance for large timing offset and Stop and Go algorithm shows good performance for Doppler shift. so we propose to use FSE-DFE structure with Stop and Go algorithm for the reliable indoor reception.

  • PDF

A 12.5-Gb/s Low Power Receiver with Equalizer Adaptation (이퀄라이저 적응기를 포함한 12.5-Gb/s 저전력 수신단 설계)

  • Kang, Jung-Myung;Jung, Woo-Chul;Kwon, Kee-Won;Chun, Jung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.71-79
    • /
    • 2013
  • This paper describes a 12.5 Gb/s low-power receiver design with equalizer adaptation. The receiver adapts to channel and chip process variation by adaptation circuit using sampler and serializer. The adaptation principle is explained. It describes technique receiving ground referenced differential signal of voltage-mode transmitter for low-power. The CTLE(Continuous Time Linear Equalizer) having 17.6 dB peaking gain to remove long tail ISI caused channel with -21 dB attenuation. The voltage margin is 210 mV and the timing margin is 0.75 UI in eye diagram. The receiver consumes 0.87 mW/Gb/s low power in 45 nm CMOS technology.

The Time Synchronization Signals of the GNSS Receiver for KSLV-II and Their Performance Assessment (한국형발사체 위성항법수신기의 시각동기신호 생성 및 성능 평가)

  • Kwon, Byung-Moon;Shin, Yong-Sul;Ma, Keun-Su;Yun, Kwang-Ho;Seo, Hung-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.11
    • /
    • pp.812-820
    • /
    • 2019
  • The GNSS receiver for KSLV(Korea Space Launch Vehicle)-II provides real-time navigation data as well as precise time and time interval. The precise time signals provided by the GNSS receiver that can be used for the time synchronization between onboard systems, and between the onboard systems and ground stations have the forms of the 1PPS(One Pulse Per Second) and IRIG-B(Inter-Range Instrumentation Group Time Code B) which are synchronized with UTC(Coordinated Universal Time). A signal for timing faults also informs whether the time synchronization signals are available or not. This paper describes the time synchronization signals of the GNSS receiver for KSLV-II and their performance assessment.

Multi-GNSS Standard Point Positioning using GPS, GLONASS, BeiDou and QZSS Measurements Recorded at MKPO Reference Station in South Korea

  • Choi, Byung-Kyu;Cho, Chang-Hyun;Cho, Jung Ho;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.4
    • /
    • pp.205-211
    • /
    • 2015
  • The Global Navigation Satellite System (GNSS) is undergoing dramatic changes. Nowadays, much more satellites are transmitting navigation data at more frequencies. A multi-GNSS analysis is performed to improve the positioning accuracy by processing combined observations from different GNSS. The multi-GNSS technique can improve significantly the positioning accuracy. In this paper, we present a combined Global Positioning System (GPS), the GLObal NAvigation Satellite System (GLONASS), the China Satellite Navigation System (BeiDou), and the Quasi-Zenith Satellite System (QZSS) standard point positioning (SPP) method to exploit all currently available GNSS observations at Mokpo (MKPO) station in South Korea. We also investigate the multi-GNSS data recorded at MKPO reference station. The positioning accuracy is compared with several combinations of the satellite systems. Because of the different frequencies and signal structure of the different GNSS, intersystem biases (ISB) parameters for code observations have to be estimated together with receiver clocks in multi-GNSS SPP. We also present GPS/GLONASS and GPS/BeiDou ISB values estimated by the daily average.

Design of Component-Based GNSS Multi-Band IF Signal Generator

  • Cho, Sung Lyong;Lim, Deok Won;Yeo, Sang-Rae;Park, Chansik;Hwang, Dong-Hwan;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.1 no.1
    • /
    • pp.29-34
    • /
    • 2012
  • A software GNSS signal generator for the GPS L1/L2/L5 and Galileo E1/E5 signals is proposed in this paper. And this signal generator is designed and implemented with several components by considering the reuse and expansion of components for similar GNSS signals. The characteristics of the reusability of the components are confirmed with the carrier generation and the band-pass filter components. And the functionality of the GNSS multi-band IF signal generator is validated by using the commercial software GPS L1 receiver, and the performance of signal acquisition, tracking and accuracy of horizontal position error are analyzed for this validation. As a result, the GPS L1 signal generator operates successfully and it could be expected that other signal generators also operate well because most of components are the same as those of the GPS L1 signal generator.

Comparison Between DCM and Quaternion Transformation in Lever Arm Compensation of Reference System for Flight Performance Evaluation of DGPS/INS

  • Park, Ji-Hee;Shin, Dong-Ho
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.1 no.1
    • /
    • pp.45-49
    • /
    • 2012
  • The flight performance evaluation of navigation system is very significant because the reliability of navigation data directly affect the safety of aircraft. Especially, the high-level navigation system such as DGPS/INS, need more precise flight performance evaluation method. The performance analysis is evaluated by comparing between the navigation system in aircraft and reference trajectory which is more precise than navigation system in aircraft. In order to verify DGPS/INS performance of m-level, the GPS receiver, which is capable post-processed Carrier-phase Differential GPS(CDGPS) method of cm-level, have to be used as reference system. The DGPS/INS is estimated the Center of Gravity (CG) point of aircraft to offer precise performance while the reference system is output the position of GPS antenna which is mounted on the outside of aircraft. Therefore, in order to more precise performance evaluation, it needs to compensate the lever arm and coordinates transformation. This paper use quaternion and Direct Cosine Matrix(DCM) methods as coordinate transformation matrix in lever arm compensation of CDGPS reference trajectory. And it compares NED errors of DCM and quaternion transformation in lever arm of reference trajectory via DGPS/INS result.

Precise Orbit Determination of GRACE-A Satellite with Kinematic GPS PPP

  • Choi, Byung-Kyu;Roh, Kyoung-Min;Yoo, Sung-Moon;Jo, Jung-Hyun;Lee, Sang-Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.1 no.1
    • /
    • pp.59-64
    • /
    • 2012
  • Precise Point Positioning (PPP) has been widely used in navigation and orbit determination applications as we can obtain precise Global Positioning System (GPS) satellite orbit and clock products. Kinematic PPP, which is based on the GPS measurements only from the spaceborne GPS receiver, has some advantages for a simple precise orbit determination (POD). In this study, we developed kinematic PPP technique to estimate the orbits of GRACE-A satellite. The comparison of the mean position between the JPL's orbit product and our results showed the orbit differences 0.18 cm, 0.54 cm, and 0.98 cm in the Radial, in Along-track, and Cross-track direction respectively. In addition, we obtained the root mean square (rms) values of 4.06 cm, 3.90 cm, and 3.23 cm in the satellite coordinate components relative to the known coordinates.

A Feasibility Test on the DGPS by Correction Projection Using MSAS Correction

  • Yoon, Dong Hwan;Park, Byungwoon;Yun, Ho;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.1
    • /
    • pp.25-30
    • /
    • 2014
  • Differential Global Positioning System-Correction Projection (DGPS-CP) algorithm, which has been suggested as a method of correcting pre-calculated position error by projecting range-domain correction to positional domain, is a method to improve the accuracy performance of a low price GPS receiver to 1 to 3 m, which is equivalent to that of DGPS, just by using a software program without changing the hardware. However, when DGPS-CP algorithm is actually realized, the error is not completely eliminated in a case where a reference station does not provide correction of some satellites among the visible satellites used in user positioning. In this study, the problem of decreased performance due to the difference in visible satellites between a user and a reference station was solved by applying the Multifunctional Transport Satellites (MTSAT) based Augmentation System (MASA) correction to DGPS-CP, instead of local DGPS correction, by using the Satellite Based Augmentation System (SBAS) operated in Japan. The experimental results showed that the accuracy was improved by 25 cm in the horizontal root mean square (RMS) and by 20 cm in the vertical RMS in comparison to that of the conventional DGPS-CP.