• Title/Summary/Keyword: time-varying sliding mode

Search Result 84, Processing Time 0.041 seconds

Design of Stable Time-varying Sliding Mode System

  • Kim, Ga-Gue;Ma, Jin-Suk;Lim, Chae-Deok;Choi, Bong-Yeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.62.2-62
    • /
    • 2001
  • In this paper, we present a new time-varying sliding mode system that guarantees stable error convergence. The previous papers have dealt with stability of the time-varying sliding mode system by point-wisely investigating the stability of time-invariant system every time. However, it may be unstable even though it guarantees time-invariant stability every time, We designed the time-varying sliding surface so that the resultant time-varying system on sliding mode may be Stable. The initial sliding surface is obtained so that shifting distance of the surface may be minimized with respect to an initial error, and the intercept is produced so that the surface may pass the initial error.

  • PDF

Discrete-Time Sliding Mode Controller for Linear Time-Varying Systems with Disturbances

  • Park, Kang-Bak
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.244-247
    • /
    • 2000
  • In this paper, a discrete-time sliding mode controller for linear time-varying systems with disturbances is proposed. The proposed method guarantees the systems state is globally uniformly ultimately bounded(G.U.U.B) under the existence of time-varying disturbances.

  • PDF

Time-Varying Sliding Mode Following Root Locus for Higher-Order Systems (고차 시스템을 위한 근궤적을 따르는 시변 슬라이딩 모드)

  • Kim, Ga-Gue;Choi, Bong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.379-384
    • /
    • 1999
  • In this paper, we present a new time-varying sliding surface to achieve fast and robust tracking of higher-order uncertain systems. The surface passes through an initial error, and afterwards, it moves towards a predetermined target surface by means of a variable named by sliding surface gain and its intercept. Specifically, the sliding surface gain is determined so that its initial value can minimize a shifting distance of the surface and that the system roots in sliding mode can follow certain stable trajectories. The designed sliding mode control forces the system errors to stay always on the proposed surface from the beginning. By this means, the system remains insensitive to system uncertainties and disturbances for the whole time. To illustrate the effectiveness of the proposed method, the comparative study with conventional time-invariant sliding mode control is performed.

  • PDF

Design of Robot Controller using Time-Varying Sliding Surface (시변 슬라이딩 평면을 이용한 로봇 제어기의 설계)

  • Lee, Ju-Jang
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.359-361
    • /
    • 1993
  • In this paper, a variable structure controller with time-varying sliding surface is proposed for robot manipulators. The proposed time-varying sliding surface ensures the existence of sliding mode from an initial state, while the contentional sliding surface cannot achieve the robust performance against parameter variations and disturbances before the sliding mode occurs. Therefore, error transient can be fully prescribed in advance for all time. Furthermore, it is shown that the overall system is globally exponetially stable. The efficiency of the proposed method for the trajectory tracking has been demonstrated by simulations.

  • PDF

Sliding Mode Controller with Enhanced Performance Using Time-Varying Surface and Fuzzy Logic

  • Park, Chang-Woo;Park, Soon-Hyung;Park, Mignon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.51-54
    • /
    • 2000
  • In variable structure control algorithm, sliding mode makes the closed loop system insensitive to modelling uncertainties and external disturbances. However due to imperfections in switching, the system trajectory chatters, which is very undesirable. And the insensitivity property of a sliding mode controller is present only when the system is in the sliding mode. To overcome these shortcomings, in this paper, new sliding mode control algorithm using time-varying sliding surface and fuzzy PI structrue is proposed.

  • PDF

Robust Controller Design for Uncertain Dynamic System Using Time Delay Control and Sliding Mode Control Method (시간지연 제어와 슬라이딩모드 제어기법을 이용한 불확실한 동적 시스템의 강인 제어기 설계)

  • 박병석;이인성;윤지섭;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.225-225
    • /
    • 2000
  • We propose the hybrid robust controller for TDC(Time Delay Control) and SMC(Sliding Mode Control) method. TDC and SMC deal with the time-varying system parameters, unknown dynamics and unexpected disturbance. This controller is applied to follow the desired reference model for the uncertain time-varying overhead crane. The control performance is evaluated through simulation. The theoretical results indicate That the proposed controller shows excellent performance to an overhead crane with the uncertain time-varying parameters and disturbance.

  • PDF

Fuzzy-Sliding Mode Control for Chattering Reduction (채터링 감소를 위한 퍼지 슬라이딩모드 제어)

  • Lee, Tae-Kyoung;Han, Jong-Kil;Ham, Woon-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.5
    • /
    • pp.393-398
    • /
    • 2001
  • This paper presents a new method with time-varying boundary layer and input gain, variated by Fuzzy Logic Control(FLC) by means of the system state in Sliding Mode Control (SMC). In addition to the time-varying boundary layer, the time-varying range of the fuzzy membership function has an effect on not only chattering reduction but also fast response characteristics. On the basis of SMC with time-varying boundary and FLC with time-varying input and output range, a computer simulation for inverted pendulum results in elimination of the chattering phenomenon and fast response.

  • PDF

A Robust Controller Design for Manipulators using Time-Varying Sliding Manifolds (시변 스위칭 평면을 이용한 로보트 매니퓰레이터의 견실한 제어기의 설계)

  • Park, Gwi-Tae;Kim, Dong-Sik;Lim, Sung-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.391-395
    • /
    • 1990
  • A new control algorithm is developed to achieve the robust performance of the system during the overall control process. Time-varying sliding manifolds are proposed to remove the reaching phase which is one of common shortcomings of variable structure control scheme. A necessary and sufficient condition for the existence of a sliding mode on the newly proposed time-varying sliding mode on the newly proposed time-varying sliding manifolds is derived by Lyapunov's second method. The digital simulation results show that the newly proposed control algorithm is superior to the typical variable structure control algorithm with respect to the robust performance of the system. The simplicity of the proposed control algorithm encourages control engineers to implement the proposed control algorithm in many control problems.

  • PDF

Chattering-Free Sliding Mode Control with a Time-Varying Sliding Surface

  • Kyung, Tai-Hyun;Kim, Jong-Shik;Lee, Kyu-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.151.4-151
    • /
    • 2001
  • Chattering-free sliding mode control is derived from the reaching law method and Lyapunov stability theorem. Its control input Is composed of continuous term and discontinuous term. By the combination of these terms, the robustness and tracking performance can be improved and the chattering can be avoided. But in the reaching mode, the sliding mode control is sensitive to the modeling uncertainties, parameter variations and disturbances, also it needs a large control input. These result in poor transient responses. In this paper, to overcome these problems in the reaching mode, a time-varying sliding surface is proposed. And it is applied to a 2-link SCARA robot manipulator, experimental results show that the transient response is improved and its ...

  • PDF

A Design of Global Optimal Sliding Mode Control for Motor Systems (모터시스템의 전역 최적 슬라이딩모드 제어기의 설계)

  • Choi, Hyeung-Sik;Cho, Yong-Sung;Park, Yong-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.101-107
    • /
    • 2000
  • A design of the global optimal sliding mode control is presented to control the second order uncertain time varying system with torque limit. With specified ranges of parametric uncertainties and torque limit, the minimum arrival time to reference inputs can be calculated. The proposed control scheme is applied to the motor system carrying loads. The merit of the proposed control scheme is that the arriving time at the reference input, which is the revolution angle, and the maximum allowable acceleration are expressed in a closed form solution. The superior performance of the proposed control scheme is validated by the computer simulation and experiments comparing with other sliding mode controllers.

  • PDF