• Title/Summary/Keyword: time-varying risk

Search Result 69, Processing Time 0.027 seconds

The Optimimum Gel Content Characteristics for Cell Cracks Prevention in PV Module (PV모듈의 cell crack 방지를 위한 EVA Sheet의 최적 Gel content 특성)

  • Kang, Kyung-Chan;Kang, Gi-Hwan;Kim, Kyung-Soo;Huh, Chang-Su;Yu, Gwon-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1108-1109
    • /
    • 2008
  • To survive in outdoor environments, photovoltaic modules rely on packaging materials to provide requisite durability. We analyzed the properties of encapsulant materials that are important for photovoltaic module packaging. Recently, the thickness of solar cell gets thinner to reduce the quantity of silicon. And the reduced thickness make it easy to be broken while PV module fabrication process. Solar cell's micro cracks are increasing the breakage risk over the whole value chain from the wafer to the finished module, because the wafer or cell is exposed to tensile stress during handling and processing. This phenomenon might make PV module's maximum power and durability down. So, when using thin solar cell for PV module fabrication, it is needed to optimize the material and fabrication condition which is quite different from normal thick solar cell process. Normally, gel-content of EVA sheet should be higher than 80% so PV module has long term durability. But high gel-content characteristic might cause micro-crack on solar cell. In this experiment, we fabricated several specimen by varying curing temperature and time condition. And from the gel-content measurement, we figure the best fabrication condition. Also we examine the crack generation phenomenon during experiment.

  • PDF

Nonlinear seismic analysis of a super 13-element reinforced concrete beam-column joint model

  • Adom-Asamoah, Mark;Banahene, Jack Osei
    • Earthquakes and Structures
    • /
    • v.11 no.5
    • /
    • pp.905-924
    • /
    • 2016
  • Several two-dimensional analytical beam column joint models with varying complexities have been proposed in quantifying joint flexibility during seismic vulnerability assessment of non-ductile reinforced concrete (RC) frames. Notable models are the single component rotational spring element and the super element joint model that can effectively capture the governing inelastic mechanisms under severe ground motions. Even though both models have been extensively calibrated and verified using quasi-static test of joint sub-assemblages, a comparative study of the inelastic seismic responses under nonlinear time history analysis (NTHA) of RC frames has not been thoroughly evaluated. This study employs three hypothetical case study RC frames subjected to increasing ground motion intensities to study their inherent variations. Results indicate that the super element joint model overestimates the transient drift ratio at the first story and becomes highly un-conservative by under-predicting the drift ratios at the roof level when compared to the single-component model and the conventional rigid joint assumption. In addition, between these story levels, a decline in the drift ratios is observed as the story level increased. However, from this limited study, there is no consistent evidence to suggest that care should be taken in selecting either a single or multi component joint model for seismic risk assessment of buildings when a global demand measure such as maximum inter-storey drift is employed in the seismic assessment framework.

Effect of gas composition on dispersion characteristics of blowout gas on offshore platform

  • Yang, Dongdong;Chen, Guoming;Shi, Jihao;Li, Xinhong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.914-922
    • /
    • 2019
  • Gas composition has a significant impact on the dispersion behavior and accumulation characteristics of blowout gas. However, few public studies has investigated the corresponding effect of gas composition. Therefore, this study firstly builds the FLACS-based numerical model about an offshore drilling platform. Then several scenarios by varying the composition of blowout gas are simulated while the scenario with the composition of "Deepwater Horizon" accident is regarded as the benchmark. Furthermore, the effects of the gas composition on the flammable cloud volume, the influenced area of flammable cloud, the influenced area of hydrogen sulfide and the critical time of the hydrogen sulfide spreading to the living area are analyzed. The results demonstrate that gas composition is a driving factor for dispersion characteristics of blowout gas. All the results can give support to reduce the risk of the similar accidents incurred by real blowouts.

Fault Diagnosis Method Based on High Precision CRPF under Complex Noise Environment

  • Wang, Jinhua;Cao, Jie
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.530-540
    • /
    • 2020
  • In order to solve the problem of low tracking accuracy caused by complex noise in the fault diagnosis of complex nonlinear system, a fault diagnosis method of high precision cost reference particle filter (CRPF) is proposed. By optimizing the low confidence particles to replace the resampling process, this paper improved the problem of sample impoverishment caused by the sample updating based on risk and cost of CRPF algorithm. This paper attempts to improve the accuracy of state estimation from the essential level of obtaining samples. Then, we study the correlation between the current observation value and the prior state. By adjusting the density variance of state transitions adaptively, the adaptive ability of the algorithm to the complex noises can be enhanced, which is expected to improve the accuracy of fault state tracking. Through the simulation analysis of a fuel unit fault diagnosis, the results show that the accuracy of the algorithm has been improved obviously under the background of complex noise.

Characteristics of Stochastic Volatility in Korean Stock Returns (우리나라 주식수익률의 확률변동성 특성에 관한 연구)

  • Chang, Kook-Hyun
    • The Korean Journal of Financial Management
    • /
    • v.20 no.1
    • /
    • pp.213-231
    • /
    • 2003
  • This paper uses the Efficient Method of Moments(EMM) of Gallant and Tauchen to estimate continuous-time stochastic volatility diffusion model for the Korean Composite Stock Price Index, sampled daily over $1995\sim2002$. The estimates display non-normality of stock index return, leptokurtic distribution, and stochastic volatility. Funker, this study suggests that two factor stochastic volatility model will be more desirable than one factor stochastic volatility model to estimate daily Korean stock return and also suggests that the stochastic volatility diffusions should allow for Poisson jumps of time-varying intensity.

  • PDF

Application of Bootstrap and Bayesian Methods for Estimating Confidence Intervals on Biological Reference Points in Fisheries Management (부트스트랩과 베이지안 방법으로 추정한 수산자원관리에서의 생물학적 기준점의 신뢰구간)

  • Jung, Suk-Geun;Choi, Il-Su;Chang, Dae-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.41 no.2
    • /
    • pp.107-112
    • /
    • 2008
  • To evaluate uncertainty and risk in biological reference points, we applied a bootstrapping method and a Bayesian procedure to estimate the related confidence intervals. Here we provide an example of the maximum sustainable yield (MSY) of turban shell, Batillus cornutus, estimated by the Schaefer and Fox models. Fitting the time series of catch and effort from 1968 to 2006 showed that the Fox model performs better than the Schaefer model. The estimated MSY and its bootstrap percentile confidence interval (CI) at ${\alpha}=0.05$ were 1,680 (1,420-1,950) tons for the Fox model and 2,170 (1,860-2,500) tons for the Schaefer model. The CIs estimated by the Bayesian approach gave similar ranges: 1,710 (1,450-2,000) tons for the Fox model and 2,230 (1,760-2,930) tons for the Schaefer model. Because uncertainty in effort and catch data is believed to be greater for earlier years, we evaluated the influence of sequentially excluding old data points by varying the first year of the time series from 1968 to 1992 to run 'backward' bootstrap resampling. The results showed that the means and upper 2.5% confidence limit (CL) of MSY varied greatly depending on the first year chosen whereas the lower 2.5% CL was robust against the arbitrary selection of data, especially for the Schaefer model. We demonstrated that the bootstrap and Bayesian approach could be useful in precautionary fisheries management, and we advise that the lower 2.5% CL derived by the Fox model is robust and a better biological reference point for the turban shells of Jeju Island.

Study on Dust Explosion Characteristics of Acetylene Black (Acetylene Black의 분진폭발 특성 연구)

  • Jae Jun Choi;Dong Myeong Ha
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.2
    • /
    • pp.38-43
    • /
    • 2024
  • Recently, with the expanding market for electronic devices and electric vehicles, secondary battery usage has been on the rise. Lithium-ion batteries are particularly popular due to their fast charging times and lightweight nature compared to other types of batteries. A secondary battery consists of four components: anode, cathode, electrolyte, and separator. Generally, the positive and negative electrode materials of secondary batteries are composed of an active material, a binder, and a conductive material. Acetylene Black (AB) is utilized to enhance conductivity between active material particles or metal dust collectors, preventing the binder from acting as an insulator. However, when recycling waste batteries that have been subject to high usage, there is a risk of fire and explosion accidents, as accurately identifying the characteristics of Acetylene Black dust proves to be challenging. In this study, the lower explosion limit for Acetylene Black dust with an average particle size of 0.042 ㎛ was determined to be 153.64 mg/L using a Hartmann-type dust explosion device. Notably, the dust did not explode at values below 168 mg, rendering the lower explosion limit calculation unfeasible. Analysis of explosion delay times with varying electrode gaps revealed the shortest delay time at 3 mm, with a noticeable increase in delay times for gaps of 4 mm or greater. The findings offer fundamental data for fire and explosion prevention measures in Acetylene Black waste recycling processes via a predictive model for lower explosion limits and ignition delay time.

A Study on the Cross Hedge Performance of KOSPI 200 Stock Index Futures (코스피 200 주가지수선물을 이용한 교차헤지 (cross-hedge))

  • Hong, Chung-Hyo;Moon, Gyu-Hyun
    • The Korean Journal of Financial Management
    • /
    • v.23 no.1
    • /
    • pp.243-266
    • /
    • 2006
  • This paper tests cross hedging performance of the KOSPI 200 stock index futures to hedge the downside risk of the KOSPI, KOSPI 200 and KOSDAQ50 spot market. For this purpose we introduce the minimum variance hedge model, bivariate GARCH(1,1) and EGARCH(1,1) model as hedge models. The main results are as follows; First, we find that the direct hedge performance of KOSPI 200 index futures is better than those of indirect hedge performance. second, in case or cross hedge performance the hedge effect of KOSPI 200 stock index futures market against KOSPI 200 stock index spot market is relatively better than those of KOSPI 200 index futures against KOSPI and KOSDAQ spot position. Third, for the out-sample, hedging effectiveness of the risk-minimization with constant hedge ratios is higher than those of the time varying bivariate GARCH(1,1) and EGARCH(1,1) model. In conclusion, investors are encouraged to use simple risk-minimization model rather than the time varying hedge models like GARCH and EGARCH model to hedge the position of the Korean stock index cash markets.

  • PDF

A Study on the Optimal Probability Distribution for the Time Interval Between Ships on the Traffic Route of the Busan North Port (부산 북항 통항 선박간의 시간간격 최적 확률분포에 관한 연구)

  • Kim, Jong-Kwan
    • Journal of Navigation and Port Research
    • /
    • v.43 no.6
    • /
    • pp.413-419
    • /
    • 2019
  • Traffic routes typically have heavy traffic. Especially, the entrance of the route has a high risk of accidents occurring because of ships entering and exiting the port. However, almost of studies have focused on the distribution of traffic on the route. Thus, studies on the distribution between ships for passing through the route are insufficient. The purpose of this study was to analysis the traffic in the Busan north port No.1 route for one week. Based on present traffic conditions, one gate line was settled on the route with an analysis of traffic conditions. Based on the analysis data, each optimal time probability distribution between ships was divided into inbound/outbound and traffic volume. An analysis of the optimal probability distribution, was applied to 31 probability distributions divided into bounded, unbounded, non-negative, and advanced probability distribution. The KS test was applied for identifying three major optimal time probability distributions. According to the KS test results, the Wakeby distribution is the best optimal time probability distribution on the designated route. Although the optimal time probability distribution for other transportation studies such as on vehicles on highways is a non-negative probability distribution, this distribution is an advanced probability distribution. Thus, the application of major probability distribution for using other transportation studies is not applicable to this study Additionally, the distance between ships in actual traffic surveys and the distance estimated by the optimal probability distribution were compared. As a result of the comparison, those distances were fairly similar. However, this study was conducted in only one major port. Thus, it is necessary to investigate the time between ships and calculate a traffic volume on varying routes in future studies.

Hedge Effectiveness in Won-Dollar Futures Markets (원 달러 선물시장을 이용한 헤지효과성)

  • Hong, Chung-Hyo;Moon, Gyu-Hyun
    • The Korean Journal of Financial Management
    • /
    • v.21 no.1
    • /
    • pp.231-253
    • /
    • 2004
  • We examine hedge strategies that use Won-dollar futures to hedge the price risk of the Won-dollar exchange rate. We employ the naive hedge model, minimum variance hedge model and bivariate ECT-ARCH(1) model as hedge instruments, and analyze their hedge performances. The sample period covers from January 2, 2001 to December 31, 2002 with sub-samples such as daily, weekly, bi-weekly prices of the Won-dollar futures and cash. The important findings may be summarized as follows. First, there is no significant difference in hedge ratio between the risk minimum variance model and bivariate ECT-ARCH(1) model that controls for the cointegration relationship of the Won-dollar futures and cash. Second, hedge performance of the naive model and minimum variance model with constant hedge ratios is not far behind that of bivariate ECT-ARCH(1) model with time-varying hedge ratios. This results imply that investors are encouraged to use the minimum variance hedge model to hedge Won-dollar exchange rate with Won-dollar futures. Third, hedge performance and effectiveness of each model is also analyzed with respect to hedge period appear to be greater over long than over the short period. This evidence supports the hypothesis that futures prices would have more time to respond to the greater cash price changes over the longer holding period, leading to an improved hedge performance.

  • PDF