• 제목/요약/키워드: time-step finite element method

검색결과 182건 처리시간 0.025초

반용융 단조에서 응고 현상을 고려한 가압유지 단계의 유한요소해석 (Finite Element Analysis of Compression Holding Step Considering Solidification for Semi-Solid Forging)

  • 최재찬;박형진;조해용
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.597-601
    • /
    • 1997
  • The technology of Semi-Solid Forging(SSF) has been actively developed to fabricate near-net shape products using light and hardly formable materials. Generally, the SSF process is composed of slug heating,forming,compression holding and ejecting step. After forming step in SSF, the slug is comperssed during a certain holding time in order to be completely filled in the die cavity and be accelerated in solidification rate. This paper presents the analysis of temperature,solid fraction and shrinkage at compression holding step for a cylindrical slug,then predicts the solidification time to obtain the final shaped part. Enthalpy-based finite element analysis is performed to solve the heat transfer problem considering phase change in solidification.

  • PDF

반용융 단조에서 응고 현상을 고려한 가압유지 단계의 유한요소해석 (Finite Element Analysis of Compression Holding step Considering Solidification for Semi-Solid Forging)

  • Park, J.C.;Park, H.J.;Cho, H.Y.
    • 한국정밀공학회지
    • /
    • 제14권10호
    • /
    • pp.102-108
    • /
    • 1997
  • The technology of Semi-Solid Forging (SSF) has been actively developed to fabricate near-net- shape products using light and hardly formable materials. Generally, the SSF process is composed of slug heating, forming, compression holding and ejecting step. After forming step in SSF, the slug is compressed during a certain holding time in order to be completely filled in the die cavity and be accelerated in solidification rate. This paper presents the analysis of temperature, solid fraction and shrinkage at compression holding step for a cylindrical slug, then predicts the solidification time to obtain the final shaped part. Enthalpy-based finite element analysis is performed to solve the heat transfer problem considering phase change in solidification.

  • PDF

단계적 가압을 이용한 초소성 성형/확산접합의 공정설계 (Process Design of Superplastic Forming/Diffusion Bonding by Using Step-by-step Pressurization)

  • 송재선;강영길;홍성석;권용남;이정환;김용환
    • 소성∙가공
    • /
    • 제16권4호
    • /
    • pp.239-243
    • /
    • 2007
  • Superplastic forming/diffusion bonding(SPF/DB) has been widely used in the automotive and aerospace industry since it has great advantages to produce very light and strong components. Finite element method(FEM) is used to model the SPF/DB process of 3-sheet sandwich panel to predict the pressure-time curve and to analyze the process parameters. In order to eliminate defects of the part, a new pressurization scheme is proposed. Contrary to the conventional one-step pressurization, which causes the folding at the DB joint, two-step pressurization can eliminate the folding. Effect of pressurization cycle was investigated by using FE analysis and proper pressurization cycle is proposed.

유한요소법에 의한 2차원 응력파 전파 해석에 관한 연구 (A Study on Stress Wave Propagation by Finite Element Analysis)

  • 황갑운;조규종
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3369-3376
    • /
    • 1994
  • A finite element program for elastic stress wave propagation is developed in order to investigate the shape of stress field and analysis the magnitude of stress wave intensity at time increment. Accuracy and reliance of the finite element analysis are acquired when the element size is smaller than the product of the stress wave speed and the critical value of increasing time step. In the finite element analysis and theoretical solution, the longitudinal stress wave is propagated to the similar direction of impact load, and the stress wave intensity is expressed in terms of the ratio of propagated area. The direction of shear wave is declined at an angle of 45 degrees compared with longitudinal stress wave and the speed of shear wave is half of the longitudinal stress wave.

압력제어를 이용한 초소성 성형/확산접합의 공정설계 (Process design of superplastic forming/diffusion bonding by using pressure control)

  • 송재선;강영길;홍성석;권용남;이정환;김용환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.332-335
    • /
    • 2007
  • The superplastic forming (SPF) has been widely used in the automotive and aerospace industry because it has great advantages to produce very light and strong components. Finite element method (FEM) is used to model the process of superplastic forming/diffusion bonding (SPF/DB), to predict the pressure-time curve and to analyze the process parameter. In this study, process design of SPF/DB is carried out a 3-sheet sandwich part. SPF/DB process with pressure control was analyzed by using finite element method. For obtaining proper shape, step-by-step pressurization is proposed. The first step of SPD/DB process is obtained by applying of pressure in patches. From the next step it applied pressure to all regions (between inner sheets, between inner and face sheets). By using the proposed pressurization scheme, deficit in part shape is found to be eliminated.

  • PDF

엔진실린더내의 유동해석을 위한 수치해석방법 (Numerical Analysis Method for the Flow Analysis in the Engine Cylinder)

  • 최종욱;이용호;박찬국
    • 한국전산유체공학회지
    • /
    • 제5권1호
    • /
    • pp.1-7
    • /
    • 2000
  • In general, FDM(finite difference method) and FVM(finite volume method) are used for analyzing the fluid flow numerically. However it is difficult to apply them to problems involving complex geometries, multi-connected domains, and complex boundary conditions. On the contrary, FEM(finite element method) with coordinates transformation for the unstructured grid is effective for the complex geometries. Most of previous studies have used commercial codes such as KIVA or STAR-CD for the flow analyses in the engine cylinder, and these codes are mostly based on the FVM. In the present study, using the FEM for three-dimensional, unsteady, and incompressible Navier-Stokes equation, the velocity and pressure fields in the engine cylinder have been numerically analyzed. As a numerical algorithm, 4-step time-splitting method is used and ALE(arbitrary Lagrangian Eulerian) method is adopted for moving grids. In the Piston-Cylinder, the calculated results show good agreement in comparison with those by the FVM and the experimental results by the LDA.

  • PDF

A finite element model for long-term analysis of timber-concrete composite beams

  • Fragiacomo, M.
    • Structural Engineering and Mechanics
    • /
    • 제20권2호
    • /
    • pp.173-189
    • /
    • 2005
  • The paper presents a finite element model for studying timber-concrete composite beams under long-term loading. Both deformability of connection system and rheological behaviour of concrete, timber and connection are fully considered. The creep of component materials and the influence of moisture content on the creep of timber and connection, the so-called "mechano-sorptive" effect, are evaluated by means of accurate linear models. The solution is obtained by applying an effective step-by-step procedure in time, which does not require storing the whole stress history in some points in order to account for the creep behaviour. Hence the proposed method is suitable for analyses of composite beams subjected to complex loading and thermo-hygrometric histories. The possibility to accurately predict the long-term response is then shown by comparing numerical and experimental results for different tests.

HIGHER ORDER GALERKIN FINITE ELEMENT METHOD FOR THE GENERALIZED DIFFUSION PDE WITH DELAY

  • LUBO, GEMEDA TOLESSA;DURESSA, GEMECHIS FILE
    • Journal of applied mathematics & informatics
    • /
    • 제40권3_4호
    • /
    • pp.603-618
    • /
    • 2022
  • In this paper, a numerical solution of the generalized diffusion equation with a delay has been obtained by a numerical technique based on the Galerkin finite element method by applying the cubic B-spline basis functions. The time discretization process is carried out using the forward Euler method. The numerical scheme is required to preserve the delay-independent asymptotic stability with an additional restriction on time and spatial step sizes. Both the theoretical and computational rates of convergence of the numerical method have been examined and found to be in agreement. As it can be observed from the numerical results given in tables and graphs, the proposed method approximates the exact solution very well. The accuracy of the numerical scheme is confirmed by computing L2 and L error norms.

초음파 전파 및 산란 문제의 유한요소 해석 (Finite Element Analysis of Ultrasonic Wave Propagation and Scattering)

  • 정현조;박문철;박윤원
    • 비파괴검사학회지
    • /
    • 제22권4호
    • /
    • pp.411-421
    • /
    • 2002
  • 초음파의 전파와 결함에 의한 산란장의 정확한 해석은 초음파 비파괴평가에서 중요한 역할을 한다. 수치해석 법은 매개변수에 대한 연구를 간단하고 값싸게 할 수 있으므로 결함 탐지 확률을 높이고 결과적으로 검사의 신뢰도를 개선시키는데 도움이 된다. 본 연구에서는 초음파 전파와 산란장의 계산을 위하여 유한요소법(finite element method)을 사용하였으며, 대표적인 몇 가지 문제에 대하여 시뮬레이션을 실시하여 해석의 타당성을 검증하였다. 상용 FEM 프로그램을 이용하여 안정적인 수치해를 얻기 위한 유한요소 격자 크기와 시간 근사 스텝을 먼저 결정하였다. 2-D 등방성 및 이방성 재료에서의 전파와 산란 문제를 다루었으며, 이론적 정해 또는 실험 결과가 알려진 문제를 선정하여 FEM 해석 결과와 비교, 분석하였다.

직접 격자 사상법을 이용한 직사각컵 및 S-Rail 성형공정의 3차원 유한요소 역해석 (Three Dimensional Finite Element Inverse Analysis of Rectangular Cup and S-Rail Forming Processes using a Direct Mesh Mapping Method)

  • 김승호;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.81-84
    • /
    • 2001
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. In some drawing or stamping simulation with inverse method, it is difficult to apply inverse scheme due to the large aspect ratio or steep vertical angle of inclination. The reason is that initial guesses are hard to make out with present method for those cases. In this paper, a direct mesh marring scheme to generate initial guess on the sliding constraint surface described by finite element patches is suggested for one step inverse analysis to calculate initial blank shape. Radial type mapping is adopted for the simulation of rectangular cup drawing process with large aspect ratio and parallel type mapping for the simulation of S-Rail forming process with steep vertical angle of inclination.

  • PDF