• Title/Summary/Keyword: time-series prediction

검색결과 912건 처리시간 0.031초

시계열패턴의 학습과 예측을 위한 적응 시간지연 회귀 신경회로망 (An adaptive time-delay recurrent neural network for temporal learning and prediction)

  • 김성식
    • 한국통신학회논문지
    • /
    • 제21권2호
    • /
    • pp.534-540
    • /
    • 1996
  • This paper presents an Adaptive Time-Delay Recurrent Neural Network (ATRN) for learning and recognition of temporal correlations of temporal patterns. The ATRN employs adaptive time-delays and recurrent connections, which are inspired from neurobiology. In the ATRN, the adaptive time-delays make the ATRN choose the optimal values of time-delays for the temporal location of the important information in the input parrerns, and the recurrent connections enable the network to encode and integrate temporal information of sequences which have arbitrary interval time and arbitrary length of temporal context. The ATRN described in this paper, ATNN proposed by Lin, and TDNN introduced by Waibel were simulated and applied to the chaotic time series preditcion of Mackey-Glass delay-differential equation. The simulation results show that the normalized mean square error (NMSE) of ATRN is 0.0026, while the NMSE values of ATNN and TDNN are 0.014, 0.0117, respectively, and in temporal learning, employing recurrent links in the network is more effective than putting multiple time-delays into the neurons. The best performance is attained bythe ATRN. This ATRN will be sell applicable for temporally continuous domains, such as speech recognition, moving object recognition, motor control, and time-series prediction.

  • PDF

LSTM 기반의 네트워크 트래픽 용량 예측 (LSTM based Network Traffic Volume Prediction)

  • 뉘엔양쯔엉;뉘엔반퀴엣;뉘엔휴쥐;김경백
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.362-364
    • /
    • 2018
  • Predicting network traffic volume has become a popular topic recently due to its support in many situations such as detecting abnormal network activities and provisioning network services. Especially, predicting the volume of the next upcoming traffic from the series of observed recent traffic volume is an interesting and challenging problem. In past, various techniques are researched by using time series forecasting methods such as moving averaging and exponential smoothing. In this paper, we propose a long short-term memory neural network (LSTM) based network traffic volume prediction method. The proposed method employs the changing rate of observed traffic volume, the corresponding time window index, and a seasonality factor indicating the changing trend as input features, and predicts the upcoming network traffic. The experiment results with real datasets proves that our proposed method works better than other time series forecasting methods in predicting upcoming network traffic.

Ship Motion-Based Prediction of Damage Locations Using Bidirectional Long Short-Term Memory

  • Son, Hye-young;Kim, Gi-yong;Kang, Hee-jin;Choi, Jin;Lee, Dong-kon;Shin, Sung-chul
    • 한국해양공학회지
    • /
    • 제36권5호
    • /
    • pp.295-302
    • /
    • 2022
  • The initial response to a marine accident can play a key role to minimize the accident. Therefore, various decision support systems have been developed using sensors, simulations, and active response equipment. In this study, we developed an algorithm to predict damage locations using ship motion data with bidirectional long short-term memory (BiLSTM), a type of recurrent neural network. To reflect the low frequency ship motion characteristics, 200 time-series data collected for 100 s were considered as input values. Heave, roll, and pitch were used as features for the prediction model. The F1-score of the BiLSTM model was 0.92; this was an improvement over the F1-score of 0.90 of a prior model. Furthermore, 53 of 75 locations of damage had an F1-score above 0.90. The model predicted the damage location with high accuracy, allowing for a quick initial response even if the ship did not have flood sensors. The model can be used as input data with high accuracy for a real-time progressive flooding simulator on board.

MAGRU: Multi-layer Attention with GRU for Logistics Warehousing Demand Prediction

  • Ran Tian;Bo Wang;Chu Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권3호
    • /
    • pp.528-550
    • /
    • 2024
  • Warehousing demand prediction is an essential part of the supply chain, providing a fundamental basis for product manufacturing, replenishment, warehouse planning, etc. Existing forecasting methods cannot produce accurate forecasts since warehouse demand is affected by external factors such as holidays and seasons. Some aspects, such as consumer psychology and producer reputation, are challenging to quantify. The data can fluctuate widely or do not show obvious trend cycles. We introduce a new model for warehouse demand prediction called MAGRU, which stands for Multi-layer Attention with GRU. In the model, firstly, we perform the embedding operation on the input sequence to quantify the external influences; after that, we implement an encoder using GRU and the attention mechanism. The hidden state of GRU captures essential time series. In the decoder, we use attention again to select the key hidden states among all-time slices as the data to be fed into the GRU network. Experimental results show that this model has higher accuracy than RNN, LSTM, GRU, Prophet, XGboost, and DARNN. Using mean absolute error (MAE) and symmetric mean absolute percentage error(SMAPE) to evaluate the experimental results, MAGRU's MAE, RMSE, and SMAPE decreased by 7.65%, 10.03%, and 8.87% over GRU-LSTM, the current best model for solving this type of problem.

시계열분석을 적용한 저장탄약수명 예측 기법 연구 - 추진장약의 안정제함량 변화를 중심으로 - (Prediction of the shelf-life of ammunition by time series analysis)

  • 이정우;김희보;김영인;홍윤기
    • 한국국방경영분석학회지
    • /
    • 제37권1호
    • /
    • pp.39-48
    • /
    • 2011
  • 야전에 저장된 탄약의 수명을 예측하는 것은 군의 전투지원 핵심요소로 실무적으로 매우 중요한 의미가 있다. 본 연구는 6년간 수행한 155mm 추진장약(KD541)의 ASRP(Ammunition Stockpile Reliability Program : 저장탄약신뢰성평가) 결과를 기초로 추진장약 추진제의 안정제함량 변화에 따른 시계열분석 (ARIMA 모델) 방법론을 적용 저장탄약수명을 예측하였다. 이번 연구는 기존의 회귀분석 모델을 활용한 연구방법과 다르게 시계열분석을 적용하되 미니 탭 프로그램을 활용하여 시계열분석을 적용 저장탄약수명을 예측하였다. 이러한 분석결과 155mm 추진장약(KD541) 저장수명은 35~43년으로 예측되었다.

Time Series Data Cleaning Method Based on Optimized ELM Prediction Constraints

  • Guohui Ding;Yueyi Zhu;Chenyang Li;Jinwei Wang;Ru Wei;Zhaoyu Liu
    • Journal of Information Processing Systems
    • /
    • 제19권2호
    • /
    • pp.149-163
    • /
    • 2023
  • Affected by external factors, errors in time series data collected by sensors are common. Using the traditional method of constraining the speed change rate to clean the errors can get good performance. However, they are only limited to the data of stable changing speed because of fixed constraint rules. Actually, data with uneven changing speed is common in practice. To solve this problem, an online cleaning algorithm for time series data based on dynamic speed change rate constraints is proposed in this paper. Since time series data usually changes periodically, we use the extreme learning machine to learn the law of speed changes from past data and predict the speed ranges that change over time to detect the data. In order to realize online data repair, a dual-window mechanism is proposed to transform the global optimal into the local optimal, and the traditional minimum change principle and median theorem are applied in the selection of the repair strategy. Aiming at the problem that the repair method based on the minimum change principle cannot correct consecutive abnormal points, through quantitative analysis, it is believed that the repair strategy should be the boundary of the repair candidate set. The experimental results obtained on the dataset show that the method proposed in this paper can get a better repair effect.

카오스 이론 기반 시계열의 내재적 패턴분석: 룰렛과 KOSPI200 지수선물 데이터 대상 (Analysis of Intrinsic Patterns of Time Series Based on Chaos Theory: Focusing on Roulette and KOSPI200 Index Future)

  • 이희철;김홍곤;김희웅
    • 지식경영연구
    • /
    • 제22권4호
    • /
    • pp.119-133
    • /
    • 2021
  • 각 산업에서 대량의 데이터가 생산되면서, 빠른 경영 의사결정을 위해 시계열 패턴 예측 연구가 수많이 진행되고 있다. 하지만 데이터에 내재된 불확실성으로 인해 비선형 시계열 데이터의 특정 패턴을 예측하는 데 한계가 존재하고, 기업경영의 전략적 의사결정 어려움이 존재한다. 또한, 최근 수십 년간 불규칙한 랜덤워크 모형의 시계열 데이터 예측을 위해 산업의 목적에 맞는 금융시장 데이터를 대상으로 다양한 연구가 진행되고 있지만, 특정 규칙을 예측하고 지속가능의 기업목적 달성 어려움이 있다. 본 연구에서는 룰렛 데이터와 금융시장 데이터를 Chaos 분석기법을 이용하여 예측 결과를 비교분석하고 유의미한 결과를 도출하였다. 그리고, 본 연구는 카오스 분석이 시계열 자료를 분석하는데 있어 새로운 방법을 모색하는데 유용함을 확인하였다. 룰렛 게임의 특성을 한국 주가지수 선물의 시계열과 비교 분석하여 추세가 확인되는 경우 예측력을 높일 수 있다는 점을 도출하였으며, 불확실성이 높고 랜덤워크가 존재하는 비선형 시계열 데이터가 특정한 패턴을 가지고 있는지 판단하는데 의의가 있다.

Support Vector Machine과 상태공간모형을 이용한 단변량 수문 시계열의 동역학적 비선형 예측모형 (Dynamic Nonlinear Prediction Model of Univariate Hydrologic Time Series Using the Support Vector Machine and State-Space Model)

  • 권현한;문영일
    • 대한토목학회논문집
    • /
    • 제26권3B호
    • /
    • pp.279-289
    • /
    • 2006
  • 최근에 수문시계열로부터 저차원의 비선형 거동을 재구성하고자 하는 연구가 활발히 진행되고 있다. 이러한 관점에서 본 연구에서는 Support Vector Machine(SVM)을 이용하여 우수한 상태-공간 재구성 능력을 갖는 비선형 예측모형을 구성하여 Great Salt Lake(GSL) Volume에 적용하였다. SVM은 Kernel 함수로부터 유도된 고차원의 특성공간 안에서 선형함수의 가상공간을 이용하는 Machine Learning 방법론이다. 또한 SVM은 훈련자료로부터 얻어지는 평균제곱오차가 아닌 일반화된 오차를 최소화함으로써 상대적으로 기존 방법에 비해 적은 수의 매개변수와 과적합(over fitting)을 피하면서 비선형 함수의 최적화가 가능하다. 본 연구에서 제시한 SVM 회귀분석의 적용성은 미국의 GSL의 2주 간격 Volume을 대상으로 검토하였다. SVM을 이용한 비선형 예측모형은 GSL Volume의 2주(1-Step), 8주(4-Step)와 반복예측(Iterated Prediction, 121-Step)까지 적용되었다. 본 연구에서는 극치사상 즉, 급격한 감소 및 증가 구간을 예측하는데 있어서 훈련구간과 예측구간을 구분하여 모형의 신뢰성을 평가하였다. 예측결과SVM은 훈련자료로부터 적은 수의 관측치를 이용하여 동역학적 거동을 추출할 수 있었으며 실제 관측자료와 거의 유사한 예측이 가능함을 통계적 지표로 확인할 수 있었다. 따라서 비선형 수문시계열의 단기 예측을 위한 모형으로 적용이 가능할 것으로 판단된다.

A Laplacian Autoregressive Time Series Model

  • Son, Young-Sook;Cho, Sin-Sup
    • Journal of the Korean Statistical Society
    • /
    • 제17권2호
    • /
    • pp.101-120
    • /
    • 1988
  • A time series model with Laplacian (double-exponential) marginal distribution, NLAR(2), was proposed by Dewald and Lewis (1985). The special cases of NLAR(2) process and their properties are considered. Extensions to the NLAR(p) is discussed. It is shown that the NLAR(1) satisfies the strong-mixing conditions, hence the model-free prediction interval using the sample quantiles can be obtained.

  • PDF

카오스 퍼지 제어기를 이용한 전력소요량의 단기예측에 관한 연구 (A Study on Short-Term Prediction of Supplied Electrical Power using Chaos Fuzzy Controller)

  • 추연규;정대균
    • 한국항해학회지
    • /
    • 제24권3호
    • /
    • pp.147-155
    • /
    • 2000
  • In this paper, we propose the Chaos Fuzzy controller to analyze the chaotic character of time series obtained from the specific plant and to predict the short-term for power consumption of the plant using the Fuzzy controller. We compared the predicted data with the active ones and checked the error generated by them after we time series of supplied power to the proposed controller. As a result of the simulation, we obtained a admirable consequence that the proposed controller can be advanced through various and accurate data acquisition, and continuous analysis of the resident and industrial environment.

  • PDF