• Title/Summary/Keyword: time-series matching

Search Result 112, Processing Time 0.042 seconds

Moving Object Tracking in UAV Video using Motion Estimation (움직임 예측을 이용한 무인항공기 영상에서의 이동 객체 추적)

  • Oh, Hoon-Geol;Lee, Hyung-Jin;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.4
    • /
    • pp.400-405
    • /
    • 2006
  • In this paper, we propose a moving object tracking algorithm by using motion estimation in UAV(Unmanned Aerial Vehicle) video. Proposed algorithm is based on generation of initial image from detected reference image, and tracking of moving object under the time-varying image. With a series of this procedure, tracking process is stable even when the UAV camera sways by correcting position of moving object, and tracking time is relatively reduced. A block matching algorithm is also utilized to determine the similarity between reference image and moving object. An experimental result shows that our proposed algorithm is better than the existing full search algorithm.

  • PDF

Extension of the Prefix-Querying Method for Efficient Time-Series Subsequence Matching Under Time Warping (타임 워핑 하의 효율적인 시계열 서브시퀀스 매칭을 위한 접두어 질의 기법의 확장)

  • Chang, Byoung-Chol;Kim, Sang-Wook;Cha, Jae-Hyuk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.11a
    • /
    • pp.121-124
    • /
    • 2005
  • 본 논문에서는 타임 워핑 하의 시계열 서브시퀀스 매칭을 처리하는 방법에 대하여 논의한다. 타임 워핑은 시퀀스의 길이가 서로 다른 경우에도 유사한 패턴을 갖는 시퀀스들을 찾을 수 있도록 해 주는 변환이다. 접두어 질의 기법(prefix-querying method)는 착오 기각(false dismissal) 없이 타임 워핑 하의 시계열 서브시퀀스 매칭을 처리하는 인덱스를 이용한 최초의 방식이다. 이 방법은 사용자가 질의를 편리하게 작성하도록 하기 위하여 기본 거리 함수로서 $L_{\infty}$를 사용한다. 본 논문에서는 $L_{\infty}$ 대신 타임 워핑 하의 시계열 서브시퀀스 매칭에서 기본 거리 함수로서 가장 널리 사용되는 $L_1$을 적용할 수 있도록 접두어 질의를 확장한다. 또한, 제안된 기법으로 타임 워핑 하의 시계열 서브시퀀스 매칭을 수행하는 경우 착오 기각이 발생하지 않음을 이론적으로 증명한다. 다양한 실험을 통한 성능 평가를 통하여 본 연구에서 제시하는 기법의 우수성을 검증한다. 실험 결과에 의하면, 제안된 기법은 가장 좋은 성능을 보이는 기존의 기법과 비교하여 매우 뛰어난 성능 개선 효과를 보이는 것으로 나타났다.

  • PDF

A Study on Rainfall Induced Slope Failures: Implications for Various Steep Slope Inclinations

  • Do, Xuan Khanh;Jung, Kwansue;Lee, Giha;Regmi, Ram Krishna
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.5
    • /
    • pp.5-16
    • /
    • 2016
  • A rainfall induced slope failure is a common natural hazard in mountainous areas worldwide. Sudden and rapid failures which have a high possibility of occurrence in a steep slope are always the most dangerous due to their suddenness and high velocities. Based on a series of experiments this study aimed to determine a critical angle which could be considered as an approximate threshold for a sudden failure. The experiments were performed using 0.42 mm mean grain size sand in a 200 cm long, 60 cm wide and 50 cm deep rectangular flume. A numerical model was created by integrating a 2D seepage flow model and a 2D slope stability analysis model to predict the failure surface and the time of occurrence. The results showed that, the failure mode for the entire material will be sudden for slopes greater than $67^{\circ}$; in contrast the failure mode becomes retrogressive. There is no clear link between the degree of saturation and the mode of failure. The simulation results in considering matric suction showed good matching with the results obtained from experiment. A subsequent discarding of the matric suction effect in calculating safety factors will result in a deeper predicted failure surface and an incorrect predicted time of occurrence.

Context Prediction Using Right and Wrong Patterns to Improve Sequential Matching Performance for More Accurate Dynamic Context-Aware Recommendation (보다 정확한 동적 상황인식 추천을 위해 정확 및 오류 패턴을 활용하여 순차적 매칭 성능이 개선된 상황 예측 방법)

  • Kwon, Oh-Byung
    • Asia pacific journal of information systems
    • /
    • v.19 no.3
    • /
    • pp.51-67
    • /
    • 2009
  • Developing an agile recommender system for nomadic users has been regarded as a promising application in mobile and ubiquitous settings. To increase the quality of personalized recommendation in terms of accuracy and elapsed time, estimating future context of the user in a correct way is highly crucial. Traditionally, time series analysis and Makovian process have been adopted for such forecasting. However, these methods are not adequate in predicting context data, only because most of context data are represented as nominal scale. To resolve these limitations, the alignment-prediction algorithm has been suggested for context prediction, especially for future context from the low-level context. Recently, an ontological approach has been proposed for guided context prediction without context history. However, due to variety of context information, acquiring sufficient context prediction knowledge a priori is not easy in most of service domains. Hence, the purpose of this paper is to propose a novel context prediction methodology, which does not require a priori knowledge, and to increase accuracy and decrease elapsed time for service response. To do so, we have newly developed pattern-based context prediction approach. First of ail, a set of individual rules is derived from each context attribute using context history. Then a pattern consisted of results from reasoning individual rules, is developed for pattern learning. If at least one context property matches, say R, then regard the pattern as right. If the pattern is new, add right pattern, set the value of mismatched properties = 0, freq = 1 and w(R, 1). Otherwise, increase the frequency of the matched right pattern by 1 and then set w(R,freq). After finishing training, if the frequency is greater than a threshold value, then save the right pattern in knowledge base. On the other hand, if at least one context property matches, say W, then regard the pattern as wrong. If the pattern is new, modify the result into wrong answer, add right pattern, and set frequency to 1 and w(W, 1). Or, increase the matched wrong pattern's frequency by 1 and then set w(W, freq). After finishing training, if the frequency value is greater than a threshold level, then save the wrong pattern on the knowledge basis. Then, context prediction is performed with combinatorial rules as follows: first, identify current context. Second, find matched patterns from right patterns. If there is no pattern matched, then find a matching pattern from wrong patterns. If a matching pattern is not found, then choose one context property whose predictability is higher than that of any other properties. To show the feasibility of the methodology proposed in this paper, we collected actual context history from the travelers who had visited the largest amusement park in Korea. As a result, 400 context records were collected in 2009. Then we randomly selected 70% of the records as training data. The rest were selected as testing data. To examine the performance of the methodology, prediction accuracy and elapsed time were chosen as measures. We compared the performance with case-based reasoning and voting methods. Through a simulation test, we conclude that our methodology is clearly better than CBR and voting methods in terms of accuracy and elapsed time. This shows that the methodology is relatively valid and scalable. As a second round of the experiment, we compared a full model to a partial model. A full model indicates that right and wrong patterns are used for reasoning the future context. On the other hand, a partial model means that the reasoning is performed only with right patterns, which is generally adopted in the legacy alignment-prediction method. It turned out that a full model is better than a partial model in terms of the accuracy while partial model is better when considering elapsed time. As a last experiment, we took into our consideration potential privacy problems that might arise among the users. To mediate such concern, we excluded such context properties as date of tour and user profiles such as gender and age. The outcome shows that preserving privacy is endurable. Contributions of this paper are as follows: First, academically, we have improved sequential matching methods to predict accuracy and service time by considering individual rules of each context property and learning from wrong patterns. Second, the proposed method is found to be quite effective for privacy preserving applications, which are frequently required by B2C context-aware services; the privacy preserving system applying the proposed method successfully can also decrease elapsed time. Hence, the method is very practical in establishing privacy preserving context-aware services. Our future research issues taking into account some limitations in this paper can be summarized as follows. First, user acceptance or usability will be tested with actual users in order to prove the value of the prototype system. Second, we will apply the proposed method to more general application domains as this paper focused on tourism in amusement park.

Feature Matching using Variable Circular Template for Multi-resolution Image Registration (다중 해상도 영상 등록을 위한 가변 원형 템플릿을 이용한 특징 정합)

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1351-1367
    • /
    • 2018
  • Image registration is an essential process for image fusion, change detection and time series analysis using multi-sensor images. For this purpose, we need to detect accurately the difference of scale and rotation between the multi-sensor images with difference spatial resolution. In this paper, we propose a new feature matching method using variable circular template for image registration between multi-resolution images. The proposed method creates a circular template at the center of a feature point in a coarse scale image and also a variable circular template in a fine scale image, respectively. After changing the scale of the variable circular template, we rotate the variable circular template by each predefined angle and compute the mutual information between the two circular templates and then find the scale, the angle of rotation and the center location of the variable circular template, respectively, in fine scale image when the mutual information between the two circular templates is maximum. The proposed method was tested using Kompsat-2, Kompsat-3 and Kompsat-3A images with different spatial resolution. The experimental results showed that the error of scale factor, the error of rotation angle and the localization error of the control point were less than 0.004, $0.3^{\circ}$ and one pixel, respectively.

Generalization of Window Construction for Subsequence Matching in Time-Series Databases (시계열 데이터베이스에서의 서브시퀀스 매칭을 위한 윈도우 구성의 일반화)

  • Moon, Yang-Sae;Han, Wook-Shin;Whang, Kyu-Young
    • Journal of KIISE:Databases
    • /
    • v.28 no.3
    • /
    • pp.357-372
    • /
    • 2001
  • In this paper, we present the concept of generalization in constructing windows for subsequence matching and propose a new subsequence matching method. GeneralMatch, based on the generalization. The earlier work of Faloutsos et al.(FRM in short) causes a lot of false alarms due to lack of the point-filtering effect. DualMatch, which has been proposed by the authors, improves performance significantly over FRM by exploiting the point filtering effect, but it has the problem of having a smaller maximum window size (half that FRM) given the minimum query length. GeneralMatch, an improvement of DualMatch, offers advantages of both methods: it can use large windows like FRM and, at the same time, can exploit the point-filtering effect like DualMatch. GeneralMatch divides data sequences into J-sliding windows (generalized sliding windows) and the query sequence into J-disjoint windows (generalized disjoint windows). We formally prove that our GeneralMatch is correct, i.e., it incurs no false dismissal. We also prove that, given the minimum query length, there is a maximum bound of the window size to guarantee correctness of GeneralMatch. We then propose a method of determining the value of J that minimizes the number of page accesses, Experimental results for real stock data show that, for low selectivities ($10^{-6}~10^{-4}$), GeneralMatch improves performance by 114% over DualMatch and by 998% iver FRM on the average; for high selectivities ($10^{-6}~10^{-4}$), by 46% over DualMatch and by 65% over FRM on the average.

  • PDF

Comparison of Co-registration Algorithms for TOPS SAR Image (TOPS 모드 SAR 자료의 정합기법 비교분석)

  • Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1143-1153
    • /
    • 2018
  • For TOPS InSAR processing, high-precision image co-registration is required. We propose an image co-registration method suitable for the TOPS mode by comparing the performance of cross correlation method, the geometric co-registration and the enhanced spectral diversity (ESD) matching algorithm based on the spectral diversity (SD) on the Sentinel-1 TOPS mode image. Using 23 pairs of interferometric pairs generated from 25 Sentinel-1 TOPS images, we applied the cross correlation (CC), geometric correction with only orbit information (GC1), geometric correction combined with iterative cross-correlation (GC2, GC3, GC4), and ESD iteration (ESD_GC, ESD_1, ESD_2). The mean of co-registration errors in azimuth direction by cross correlation and geometric matching are 0.0041 pixels and 0.0016 pixels, respectively. Although the ESD method shows the most accurate result with the error of less than 0.0005 pixels, the error of geometric co-registration is reduced to 0.001 pixels by repetition through additional cross correlation matching between the reference and resampled slave image. The ESD method is not applicable when the coherence of the burst overlap areas is low. Therefore, the geometric co-registration method through iterative processing is a suitable alternative for time series analysis using multiple SAR data or generating interferogram with long time intervals.

Attribute-based Approach for Multiple Continuous Queries over Data Streams (데이터 스트림 상에서 다중 연속 질의 처리를 위한 속성기반 접근 기법)

  • Lee, Hyun-Ho;Lee, Won-Suk
    • The KIPS Transactions:PartD
    • /
    • v.14D no.5
    • /
    • pp.459-470
    • /
    • 2007
  • A data stream is a massive unbounded sequence of data elements continuously generated at a rapid rate. Query processing for such a data stream should also be continuous and rapid, which requires strict time and space constraints. In most DSMS(Data Stream Management System), the selection predicates of continuous queries are grouped or indexed to guarantee these constraints. This paper proposes a new scheme tailed an ASC(Attribute Selection Construct) that collectively evaluates selection predicates containing the same attribute in multiple continuous queries. An ASC contains valuable information, such as attribute usage status, partially pre calculated matching results and selectivity statistics for its multiple selection predicates. The processing order of those ASC's that are corresponding to the attributes of a base data stream can significantly influence the overall performance of multiple query evaluation. Consequently, a method of establishing an efficient evaluation order of multiple ASC's is also proposed. Finally, the performance of the proposed method is analyzed by a series of experiments to identify its various characteristics.

Analysis of the Effectiveness of Government Support Project of Excellent Manufacturing Innovation Companies from the Perspective of Growth Ladder (성장사다리 관점에서의 우수제조혁신기업의 정부지원사업 효과성 분석)

  • Chan-Woo Jeong;Hae-Soo Lee;Byoung-Gi Kim;Myung-Jun Oh
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.spc
    • /
    • pp.19-30
    • /
    • 2023
  • Recently, the government has provided support such as entering new markets, expanding sales channels, and supporting manpower, not just in the form of funding, to efficiently and effectively support limited national resources to improve corporate performance. In this study, we tried to find out the effect of government support for companies that have benefited from the Excellent Technology Research Center Project (ATC Project) and the World Class 300 project using propensity score matching. As a result of the analysis, the effect of government support for the ATC project became visible after the appointment period, while the effect of the World Class 300 project was insignificant. This means that when the size of the company is small, the effect of government support is more pronounced. This suggests that in order to maximize the effectiveness of government support, appropriate national policy interventions such as government innovation funding are needed when the size of the company is small. In this study, differences in the timing, performance indicators, and company size of policy support effects were found in the growth stage of a company from a mid- to long-term time series perspective, suggesting that support policies based on this need to be adjusted and redesigned.

Efficiency of various structural modeling schemes on evaluating seismic performance and fragility of APR1400 containment building

  • Nguyen, Duy-Duan;Thusa, Bidhek;Park, Hyosang;Azad, Md Samdani;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2696-2707
    • /
    • 2021
  • The purpose of this study is to investigate the efficiency of various structural modeling schemes for evaluating seismic performances and fragility of the reactor containment building (RCB) structure in the advanced power reactor 1400 (APR1400) nuclear power plant (NPP). Four structural modeling schemes, i.e. lumped-mass stick model (LMSM), solid-based finite element model (Solid FEM), multi-layer shell model (MLSM), and beam-truss model (BTM), are developed to simulate the seismic behaviors of the containment structure. A full three-dimensional finite element model (full 3D FEM) is additionally constructed to verify the previous numerical models. A set of input ground motions with response spectra matching to the US NRC 1.60 design spectrum is generated to perform linear and nonlinear time-history analyses. Floor response spectra (FRS) and floor displacements are obtained at the different elevations of the structure since they are critical outputs for evaluating the seismic vulnerability of RCB and secondary components. The results show that the difference in seismic responses between linear and nonlinear analyses gets larger as an earthquake intensity increases. It is observed that the linear analysis underestimates floor displacements while it overestimates floor accelerations. Moreover, a systematic assessment of the capability and efficiency of each structural model is presented thoroughly. MLSM can be an alternative approach to a full 3D FEM, which is complicated in modeling and extremely time-consuming in dynamic analyses. Specifically, BTM is recommended as the optimal model for evaluating the nonlinear seismic performance of NPP structures. Thereafter, linear and nonlinear BTM are employed in a series of time-history analyses to develop fragility curves of RCB for different damage states. It is shown that the linear analysis underestimates the probability of damage of RCB at a given earthquake intensity when compared to the nonlinear analysis. The nonlinear analysis approach is highly suggested for assessing the vulnerability of NPP structures.