• Title/Summary/Keyword: time-optimal solution

Search Result 1,159, Processing Time 0.025 seconds

An Optimal Design of Automated Storage/Retrieval System

  • Lee, Seong-Beak;Hwang, Hark
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.13 no.2
    • /
    • pp.34-46
    • /
    • 1988
  • This paper deals with design problem of unit load automated storage/retrieval systems (AS/RS). We propose an optimal design model in which the investment and maintenance costs of AS/RS, operating under dual command model is minimized over a time horizon satisfying the warehouse dimensional constraints. The model is formulated as an integer nonlinear program and an algorithm is proposed to find an optimum solution. The valididty of the solution algorithm is illustrated through an example.

  • PDF

The Optimal Solution Treatment Condition in a Al-Si-Cu AC2B Alloy (Al-Si-Cu계 AC2B 합금의 최적 용체화 처리 조건)

  • Jung, Jae-Gil;Park, June-Soo;Ha, Yang-Soo;Lee, Young-Kook;Jun, Joong-Hwan;Kang, Hee-Sam;Lim, Jong-Dae
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.4
    • /
    • pp.223-227
    • /
    • 2009
  • The precipitates, hardness, and tensile properties of Al-6.2Si-2.9Cu AC2B alloy were investigated with respect to solution treatment time at $500^{\circ}C$. $Al(Cu)-Al_2Cu$ eutectic, Si, ${\theta}-(Al_2Cu)$, and $Q-(Al_5Cu_2Mg_8Si_6)$ phases were observed in the as-cast specimen. With increasing the solution treatment time at $500^{\circ}C$, the $Al(Cu)-Al_2Cu$ eutectic and ${\theta}-(Al_2Cu)$ phases were gradually reduced and finally almost disappeared in 5 h. The mechanical properties, such as hardness, tensile strength, and elongation, were improved with solution treatment time until about 5 h due to the dissolution of the $Al_2Cu$ particles. With further holding time, the mechanical properties did not change much. The solution treated specimens for over 5 h at $500^{\circ}C$ exhibit almost the same tensile properties even after aging at $250^{\circ}C$ for 3.5 h. Accordingly, the optimal solution treatment condition of the Al-Si-Cu AC2B alloy is considered to be 5 h at $500^{\circ}C$.

A Comparative Analysis between Inflow rate Maximizing and Outflow rate Maximizing for the Urban Expressway Ramp Metering (도시고속도로 램프미터링을 위한 진입극대화방안과 진출극대화방안의 비교 연구)

  • 이인원;김대호
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.4
    • /
    • pp.7-29
    • /
    • 1996
  • The optimal solution obtained by a linear programming model is to maximize the ramp inflow rate. It is argued in this paper that the maximization of inflow rate is different from the maximization of outflow rate under congested conditions. Therefore, this paper proposes a systematic searching procedure from a linear programing formulation to a integer programming : first obtain the optimal solution by a linear programming and then adding weight to linear programming then. solve the optimal solution again by integer programming i.e. The proposed method is an interactive approach. Measure of effectiveness by simulation models regards the real time data(O/D, queue, delay, etc), can be utilized in the proposed interactive process.

  • PDF

Efficient Elitist Genetic Algorithm for Resource-Constrained Project Scheduling

  • Kim, Jin-Lee
    • Korean Journal of Construction Engineering and Management
    • /
    • v.8 no.6
    • /
    • pp.235-245
    • /
    • 2007
  • This research study presents the development and application of an Elitist Genetic Algorithm (Elitist GA) for solving the resource-constrained project scheduling problem, which is one of the most challenging problems in construction engineering. Main features of the developed algorithm are that the elitist roulette selection operator is developed to preserve the best individual solution for the next generation so as to obtain the improved solution, and that parallel schedule generation scheme is used to generate a feasible solution to the problem. The experimental results on standard problem sets indicate that the proposed algorithm not only produces reasonably good solutions to the problems over the heuristic method and other GA, but also can find the optimal and/or near optimal solutions for the large-sized problems with multiple resources within a reasonable amount of time that will be applicable to the construction industry. This paper will help researchers and/or practitioners in the construction project scheduling software area with alternative means to find the optimal schedules by utilizing the advantages of the Elitist GA.

Economic Power Dispatch with Discontinuous Fuel Cost Functions using Improved Parallel PSO

  • Mahdad, Belkacem;Bouktir, T.;Srairi, K.;Benbouzid, M.EL.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.45-53
    • /
    • 2010
  • This paper presents an improved parallel particle swarm optimization approach (IPPSO) based decomposed network for economic power dispatch with discontinuous fuel cost functions. The range of partial power demand corresponding to the partial output powers near the global optimal solution is determined by a flexible decomposed network strategy and then the final optimal solution is obtained by parallel Particle Swarm Optimization. The proposed approach tested on 6 generating units with smooth cost function, and to 26-bus (6 generating units) with consideration of prohibited zone effect, the simulation results compared with recent global optimization methods (Bee-OPF, GA, MTS, SA, PSO). From the different case studies, it is observed that the proposed approach provides qualitative solution with less computational time compared to various methods available in the literature survey.

Modification of the Fixed Coefficient Method for the Parameter Estimation of Storage Function Method (저류함수법의 매개변수 추정을 위한 상수고정법의 개선)

  • Chung, Gunhui;Park, Hee-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.1
    • /
    • pp.73-85
    • /
    • 2013
  • The researches on the parameter estimation for storage function method have been conducted for a long time using different methods. However, the determination of the optimal parameters takes a long time and there is a controversy that the proposed optimal parameters do not likely represent the physical characteristics of watershed. In this study, the characteristics of the continuity and storage function equation was analyzed and sensitivities were evaluated. As the result, the only optimal solution is suggested among several local optimums. It is also shown that the lag time is able to be determined using the direct runoff starting time of the watershed. From the sensitivity analysis, it is also proved that the determination of the lag time is very important and the only optimal solution could be found easily after selecting the lag time. Therefore, unlike the traditional optimization method, the proposed method does not take a long time to find the optimal solution which is depending on the characteristics of the rainfall events. The fixed coefficient method which is a method to estimate the optimal parameters of storage function method has been modified using the proposed method. Therefore, the practical efficiency to apply storage function method could be enhanced by applying the proposed method. While the traditional method takes care only the error of the runoff hydrograph, it is very important that the proposed method considers the characteristics of the watershed.

A New Procedure for the Initial Solution of Goal Programming (목표계획법 초기해의 새로운 절차에 관한 연구)

  • ;;Choi, Jae Bong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.19 no.1
    • /
    • pp.113-122
    • /
    • 1994
  • This study proposes a new procedure to find an initial solution to reduce the number of iterations of goal programming. The process of computing an initial solution is divided into two steps in this study. Decision variables which satisfy feasibility using Gaussian eliminations construct an initial solution reducing the iterations in the first step. It uses LHS as a tool that decision variables construct an initial solution. The initial solution which is constructed by the first step computes the updated coefficient of the objective function in the second step. If the solution does not satisfy the optimality, the optimal solution using the Modified Simplex Method is sought. The developed method doesn't reduce the overall computing time of goal programming problems, because time is more required for the process of constructing an initial solution. But The result of this study shows that the proposed procedure can reduce the large number of iterations in the first step effectively.

  • PDF

STRONG CONTROLLABILITY AND OPTIMAL CONTROL OF THE HEAT EQUATION WITH A THERMAL SOURCE

  • Kamyad, A.V.;Borzabadi, A.H.
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.787-800
    • /
    • 2000
  • In this paper we consider an optimal control system described by n-dimensional heat equation with a thermal source. Thus problem is to find an optimal control which puts the system in a finite time T, into a stationary regime and to minimize a general objective function. Here we assume there is no constraints on control. This problem is reduced to a moment problem. We modify the moment problem into one consisting of the minimization of a positive linear functional over a set of Radon measures and we show that there is an optimal measure corresponding to the optimal control. The above optimal measure approximated by a finite combination of atomic measures. This construction gives rise to a finite dimensional linear programming problem, where its solution can be used to determine the optimal combination of atomic measures. Then by using the solution of the above linear programming problem we find a piecewise-constant optimal control function which is an approximate control for the original optimal control problem. Finally we obtain piecewise-constant optimal control for two examples of heat equations with a thermal source in one-dimensional.

Feedback Semi-Definite Relaxation for near-Maximum Likelihood Detection in MIMO Systems (MIMO 시스템에서 최적 검출 기법을 위한 궤환 Semi-Definite Relaxation 검출기)

  • Park, Su-Bin;Lee, Dong-Jin;Byun, Youn-Shik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12C
    • /
    • pp.1082-1087
    • /
    • 2008
  • Maximum Likelihood (ML) detection is well known to exhibit better bit-error-rate (BER) than many other detectors for multiple-input multiple-output (MIMO) channel. However, ML detection has been shown a difficult problem due to its NP-hard problem. It means that there is no known algorithm which can find the optimal solution in polynomial-time. In this paper, Semi-Definite relaxation (SDR) is iteratively applied to ML detection problem. The probability distribution can be obtained by survival eigenvector out of the dominant eigenvalue term of the optimal solution. The probability distribution which is yielded by SDR is recurred to the received signal. Our approach can reach to nearly ML performance.

Maximum Kill Selection Algorithm for Weapon Target Assignment (WTA) Problem (무기 목표물 배정 문제의 최대 치사인원 선택 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.221-227
    • /
    • 2019
  • It has long been known that weapon target assignment (WTA) problem is NP-hard. Nonetheless, an exact solution can be found using Brute-Force or branch-and bound method which utilize approximation. Many heuristic algorithms, genetic algorithm particle swarm optimization, etc., have been proposed which provide near-optimal solutions in polynomial time. This paper suggests polynomial time algorithm that can be obtain the optimal solution of WTA problem for the number of total weapons k, the number of weapon types m, and the number of targets n. This algorithm performs k times for O(mn) so the algorithm complexity is O(kmn). The proposed algorithm can be minimize the number of trials than brute-force method and can be obtain the optimal solution.