Mg M6z 2007, 12

Efficient Elitist Genetic Algorithm for Resource-
Constrained Project Scheduling

Kim, Jin-Lee*

Abstract

This research study presents the development and application of an Elitist Genetic Algorithm (Elitist GA)

for solving the resource—constrained project scheduling problem, which is one of the most challenging

problems in construction engineering. Main features of the developed algorithm are that the elitist roulette

selection operator is developed to preserve the best individual solution for the next generation so as to

obtain the improved solution, and that parallel schedule generation scheme is used to generate a feasible
solution to the problem. The experimental results on standard problem sets indicate that the proposed
algorithm not only produces reasonably good solutions to the problems over the heuristic method and other
GA, but also can find the optimal and/or near optimal solutions for the large—sized problems with multiple
resources within a reasonable amount of time that will be applicable to the construction industry. This
paper will help researchers and/or practitioners in the construction project scheduling software area with
alternative means to find the optimal schedules by utilizing the advantages of the Elitist GA.

Keywords: Resources, scheduling, optimization, genetic algorithms, heuristics, project management

1. Introduction
1.1 Research Background

The critical path method (CPM) has been used widely in
the construction industry. However, it has proven to be
helpful only when the project deadline is not fixed and
the resources are not constrained by either availability or
time, Since there are limitations on the quantities of
available resources in practice, construction companies
are confronted with the problem of using resources
efficiently within the project constraints. Therefore,
resource scheduling arises as a result of problems with
the availability of resources. In this paper, resource
allocation, which is well known as the resource—

constrained project scheduling problem (hereinafter

*Uut3] Y, Assistant Professor, Department of Engineering
Technology, Missouri Western State University, U.S.A. Email:
Jjkim@missouriwestern.edu.

235

RCPSP), is used to describe the scheduling technique, The
RCPSP has been solved with the various exact methods,
priority-rule based heuristics, and various meta—
heuristic methods.

First, the various exact methods employ some form of
mathematical programming such as dynamic
programming and zero—one programming or other
analytical procedure such as implicit enumeration with
branch and bound to search for the best possible
solutions. Relative to the vast amount of research that
has been conducted on heuristic procedures, optimal
procedures have rarely been the focus of such extensive
research, Considerable progress has been made to
produce optimal results by depending on strong
assumptions for small—sized project networks. No optimal
procedures have proven to be computationally feasible for
large, complex projects that can occur in practice (Moselhi
and Lorterapong 1993). Thus, heuristic and meta-—
heuristic approaches are needed for large—sized project

networks,

IRHE YR =R

His& Hjezs 2007, 12

Second, priority#ule based heuristics employ some rule
of thumb or experience to determine priorities among
activities competing for available resources. They combine
one or more priority rules and schedule generation
scheme to generate one or more schedule, These heuristic
procedures generally produce solutions to the RCPSP in a
reasonable amount of time, even though the size of the
project network is large. However, they have proven to be
inconsistent with regard to the quality of results
produced on project networks (Hegazy 1999).

Finally, various meta—heuristic methods, such as
genetic algorithm (GA), simulated annealing (SA), tabu
search ('), and ant colonies (AC), have been applied to
the RCPSP to overcome the drawbacks of the exact
optimal methods and priority—rule based heuristics and
to improve the performance of the existing meta-—
heuristic methods. Among these methods, the GA, a
meta—heuristic and optimization technique, has emerged
as a tool that is beneficial for a variety of study fields
including construction applications since the introduction
in the 1960's by Holland (1975), followed by Goldberg
(1989).

1.2 Existing Studies on RCPSP with GA

GA has been used successfully to solve construction
management problems, including resource scheduling
with a small number of activities (Chan et al. 1996;
Hegazy 1999; Leu et al. 1999; Leu and Yang 1999; Toklu
2002; Hegazy and Kassab 2003). Chan et al. (1996)
developed GA-scheduler applicable to the RCPSP in the

construction industry. They made use of the serial

scheme for allocating resources into an activity. Hegazy
(1999) proposed improved heuristics with GAs for
applications to resource allocation and leveling problems,
Leu et al. (1999) developed a fuzzy model for the
resource—constrained construction schedule. Leu and
Yang (1999) presented a GA-based multicriteria optimal
model for construction scheduling. Toklu (2002) developed
a GA that applies directly on schedules using a vector of
start times, Hegazy and Kassab (2003) examined

236

resource optimization using combined simulation and
GAs,

Several studies have been also done to solve the
standard RCPSP using a GA (Lee and Kim 1996;
Hartmann 1998 and 2002; Kohlmorgen et al. 1999;
Alcaraz and Maroto 2001, Hindi et al. 2002; Valls et al.
2005). Most meta—heuristics that employed the activity
list representation in the RCPSP literature make use of
the serial scheme as a decoding procedure. However, a
few meta—heuristics employed the parallel scheme as a
decoding procedure for the RCPSP, Several works of
research for the RCPSP conducted by Brucker et al.
(1998), Demeulemeester and Herroelen (1997), and others
have been considered to be the currently most powerful
exact procedures for solving the standard RCPSP.
However, their procedures do not have a capability to find
optimal solutions, which are optimal schedules, for
project networks with 60 activities or more. According to
the work of Hartmann (1998), an experimental evaluation
study shows that commercial software packages for
project management provide schedules with an average
deviation of 4.3-9.8% from the optimal solution for a

project network with up to 30 activities.
1.3 Research Objectives

This research study was motivated to find the optimal
solutions to the RCPSP by considering the complexities of
large—sized multiple resources, Thus, this paper presents
the development and application of the Elitist GA using
the parallel scheme to find the optimal and/or near
optimal solutions to the large—sized multiple RCPSP, as
opposed to the existing studies that only considered small
number of activities in construction engineering, The
following sections briefly introduce the problem
definitions for the RCPSP, followed by the development of
the Elitist GA for solving the RCPSP. Experimental
results on the standard problem sets are presented to
show how the Elitist GA is competitive to the existing
optimal and/or near—optimal solution methods under the

same conditions,

PIRHE e R=2E

Hed Hes 2007, 12

2. Problem Description and Objective
Function

The RCPSP has gained importance from the fact that it
is a combinatorial problem, which includes job—shop
sequencing and assembly—line balancing problems. This
is well known as one type of a nondeterministic
polynomial (NP)~hard problem (Blazewicz et al. 1983). A
project that includes a finite set of activities is considered
here, where N activities labeled 1 = 1, -, n are given, Two
major assumptions have been made for the
implementation of the Elitist GA as follows: First, a
project can be represented by a CPM network diagram
where activities are numerically labeled such that
successor activities always have higher numbers than all
their predecessors. For every activity, the start and finish
time are known. Second, modeling construction activities
requires the use of material, labor, equipment, and costs,
This research assumes that resources are to be of the
renewable type and that the resource requirements are to
be discrete. The objective function for the algorithm is to
minimize the project duration when constrained by
precedence relationships among project activities and the
availability of resources. The single—project multiple
RCPSP can be formulated as follows:

minimize f(i)= max{ti+di|i = 1,2,...,71}
subject to t;—t; > d; V jE 5

P M N RR P M
IDIPN:FAEDIDY
p=lm=1=1 p=1lm=1

fi=0

ey
@)

~RR

—mi

(3

)

where, N is the total number of activities, P is the total
number of time period, such as days, and M is the total
number of resource types. The symbols of (), d;, t;, and
Si stand for the fitness function of an individual, which
means the finish time of activity i, the duration of
activity i, the starting date of activity i and j, and the set
of successors of activity i, respectively. HZZ

means the resource requirement of mth resource of

—RR
and =}

activity 1 on time p and the resource availability of mth

resource of activity i on time p, respectively,

237

The fitness function is different from the objective
function for the clarification of a computation process of
the fitness value, that is, the project duration. It aims to
find the maximum value out of all fitness values of every
activity to be scheduled in a project. The maximum value
is obtained by comparing the finish time of the last
activity and the fitness value of the activity just before
the last activity.

3. Elitist GA using Parallel Scheme

This section presents the development of the Elitist GA,
which is an algorithm that incorporates the concept of
elitism into the general genetic algorithm to find the
optimal and/or near optimal solutions to the large—sized
multiple RCPSP by preserving the best individual solution
for the next generation so as to obtain the improved
solution. The main procedure of the Elitist GA using the
parallel scheme is shown in Figure 1. This research
adopted a permutation—based encoding that was
appropriate for solving the RCPSP (Hartmann 1998;
Zhuang and Yassine 2004).

Start
Input data end Eltist GA parameters
‘ | Begin time

Step 1: Generation of Initial population

!

Step 2: Evaluation of the fitness values
» using parallel schedule generation
scheme

!

Step 3: Elitist roulette wheel selection for
reproduction

!

Step 4: One-point crossover for
recombination

|

Step 5: Uniform mutation]

p 6: Termination conditiol
(No. of Generation , Time 10 stop, or
No. of unique schedules)

YES »{ Endtime
A

En
(A schedule and makespan)

Figure 1. Flowchart for Elitist GA

e (LT T

Mg Mgz 2007, 12

For the encoding and decoding for the RCPSP, a
schedule has to be represented to encode the RCPSP. In
addition to the schedule representation, a schedule
generation scheme needs to decode the schedule
representation into a schedule. A schedule representation
Is a representation of a priority—structure among the
activities. A solution for the RCPSP was represented in a
chromosome that represented an activity sequence for the
problem, as shown in Figure 2. A chromosome is also
called an individual that was given by an activity
sequence, Each gene in a chromosome stands for an
activity number, An activity has a lower priority than all
preceding activities in the sequence and a higher priority
than all succeeding activities. Thus, an individual
becomes precedence feasible permutation of the set of
activities because an activity cannot come after the
position of one of its successors (predecessors) in the list
used for the generation of an individual,

VN

S h

H s - - - - -

l\l Ad =2 rha D=8 lAnID:S IAa 10=8 I AL ID=1 Im D=4 [AalD:? IAd D=9 I ALD=5 |MID:|| Im rD:ml
L

\,

N,

\\\\\

Figure 2. Chromosome (individual) representation

Step 1: Generation of initial population
An initial population composed of precedence feasible
individuals was produced by the random number
generator, An initial population is generated as follows:
(1) Select an activity from all unselected activity pool
(2) Check whether its immediate predecessor(s) are
already selected
(3) Continue (2) until a satisfying activity is found if not
yet selected
(4) Repeat (1) and (2) until the set of unselected activity
is empty (As a result, an individual that consists of
all activities is generated)
(5) Repeat (1) through (4) until all individuals of
population size are generated
The random number generator simply provides
precedence feasible solutions, but does not give the fitness
value, a possible starting and finishing time of an

activity, and the feasibility of resource constraints, It, for

238

example, generates an individual {2, 7, 1, 6, 4, 3, 8, 9, 5,
11, 10} for 11 non—dummy activities, An individual cannot
have duplicate activities as a result of checking

precedence constraints among activities.

Step 2. Evaluation of the fitness values

A schedule generation scheme is essential in most
heuristic solution procedures for the RCPSP. It is a vital
mechanism to compute a fitness value to the RCPSP. It is
generally classified into two different mechanisms,
depending on either as the activity increases (serial
scheme) or as time increases (parallel scheme) in the
heuristic approaches to the RCPSP, The parallel scheme,
the algorithm of Kelley (1963) and the one of Brooks
(Bedworth and Bailey 1982), was utilized in this paper to
calculate the fitness value of an individual obtained from
a population generated using the random number
generator in Step 1. Its unique feature is that each stage
n is associated with a schedule time tn, where tm<tn for
m<n holds. On account of this schedule time, the set of
scheduled activities is divided into the following two
subsets: Activities which were scheduled and are
completed up to the schedule time are in the complete set
(Cn), while activities which were scheduled, but which are
at the schedule time still active, are in the active set (An),
The decision set (Dn) contains all yet unscheduled
activities which are available for scheduling with regard
to precedence and resource constraints. The partial
schedule of each stage is made by the activities in the
complete set and the active set. The schedule time of a
stage is equal to the earliest completion time of activities
in the active set of the previous stage,

Kach stage is made up of two steps: First, the new
schedule time is determined and activities with a finish
time equal to the (new) schedule time are removed from
the active set and put into the complete set, This, in turn,
may place a number of activities into the decision set.
Second, one activity from the decision set is selected
according to the order of the activity list representation
and scheduled to start at the current schedule time,
Afterwards, this activity is removed from the decision set

pliral E C Rl

M M6z 2007, 12

and put into the active set. The second procedure is
repeated until the decision set is empty, i.e., activities
were scheduled or are no longer available for scheduling
with regard to resource constraints. The parallel scheme
terminates when all activities are in the complete set or
active set. Take one potential activity list, {2, 7, 1, 6, 4, 3,
8, 9, 5, 11, 10} as an example for illustrating the
mechanism applied in this paper. Figure 3 shows the

resource profiles of the example at t=6 days.

Resource usages
1=0

IERNEE

/— Resource fimit = 8

0t 2345 708 910 11 2213 14156 17 1819 20 21 222324252627 28 20 30 31 32 3334 35 3637 38 39 40
Time(Days)

(a} Resource profile at time 0 stage

Vs

Resource usages

‘ =8 Resource limit = 8
| |

— e s @

©

234567 222324252627 26 29 30 31 32 333435 3637 38 39 40
Time(Days)

(b} Resource profile at time 6 stage
Figure 3. Parallel schedule generation scheme

As shown in Figure 3 (a), the new schedule time is set
to zero, as a starting point of scheduling the individual I=
{2,7,1,6, 4,3, 8 9, 5 11, 10}. The first decision set {2, 1,
3} is created at time O stage because they are
unscheduled and available for scheduling with regard to
precedence relationships and resource constraints, All
three activities, 2, 1, and 3, are considered to be
scheduled at the same time, Activity 2 is selected first
because it is placed in the first position of the decision
set. Activity 2 then starts at time O for the duration of 6
because it does not have any predecessor and because its
resource requirements (RR2=6) do not exceed the
resource availability (RA=8, which is constant throughout
the project duration) through the period of its duration,
Simultaneously, Activities 1 and 3 are considered to be
scheduled at time 0, but they cannot start because of the
limitation of available resources,

Next, the new schedule time is determined at time 6

based on the earliest completion time (Day 6) of activity

239

in the active set {2} of the previous stage, as shown in
Figure 3 (b). At time 6 stage, the complete set {2}, and the
new decision set {7, 1, 6, 3} are generated. Activities 1 and
3 are contained in the previous decision set, while
Activities 7 and 6 are newly included from the list of the
individual considered because their predecessor, Activity
2, is completed. In other words, the new decision set
should be ordered into 7, 1, 6, and 3, but not 1, 3, 7, and 6
because the order of the activity list in the individual is
2,7, 1,6, 4,3, 8 9, 5, 11, 10}, Activities 7 and 1 are
scheduled at time 7 for the duration of 16 and 4,
respectively, because their resource requirements (RR7=4
and RR1+RR7=3+4=7) do not exceed the resource
availability through the period of their durations.
However, the rest of the decision set cannot be scheduled
due to the limitation of available resources. The parallel
scheme continues up to the last activity in the individual,

as the time increases,

Step 3: Elitist roulette wheel selection for reproduction

The elitist preserving selection called elitism (De Jong
1975) was adopted to combine with the roulette wheel
selection operator. Elitism roulette wheel selection
operator was created using the pseudo—code as shown in
Figure 4.

ELITIST ROULETTE SELECTION OPERATOR PROCEDURE

1: Elitechrome = best Chrome in current generation

2: Create a transformed fitness for each chrome

3: Create summation of these fitnesses

4: For each chrome J in the new generation

5: seed = RandomSeed[0, sum of transformed fitness]

6: for Chrome I = second chrome to the last chrome_
in current generation

7: if sum of transformed fitness from Chrome 1 to_
I > seed
8: Chrome J = Chrome before I

9: current generation = new generation
10: current generation's first Chrome = EliteChrome

Figure 4. Pseudo-code of elitist roulette selection operator

Elitism preserves the best individual generated up to
generation t into the current generation t+1, if the fitness
value of an individual in the current population is larger
than that of every individual in the current population,

The roulette wheel selection operator proposed by Holland

SEHEHNR=EE

Mg Hes 2007, 12

(1975) has been employed, as used in several studies
(Hartmann 1998; Leu and Yang 1999). The concept of the
selection was to determine selection probability for each

individual proportional to the fitness value.

Step 4: One—point crossover for recombination

The goal of a crossover operétor is to combine pieces of
information coming from different individuals in the
population. Preserving good building blocks and
maintaining randomness and population diversity for
searching non—redundant solutions is important. The
order of the first several activities is the key to preserve
the whole individual, providing the basis for the
remaining activities and deciding how good the order of
the remaining activities will be to a certain degree, Two
different types of crossover operators, union crossover
operator 3 (UX3) (Leu and Yang 1999) and one—point
crossover (Hartmann 1998), were identified as good
methods for the permutation—based encoding for the
RCPSP. They were developed to deal with this type of
ordering problem that occurred due to crossover
operation,

The one—point crossover operator is capable of
preserving schemata in a more effective manner because
it keeps the first half of both parents intact and is less
random than UX3. The probability of disrupting short
defining length is rather low, even though crossover
operation in the beginning of an individual is likely to
disrupt schema (Goldberg 1989). The rationale for using
the one—point crossover operator is that a precedence
feasible offspring is generated if it is applied to
precedence feasible parents (Hartmann 1998; Zhuang and
Yassine 2004). The theorem was proven by Hartmann
(1998). The one-point crossover is operated as follows:

(1) Select two parent individuals from a population

individuals

(2) Select the same position along both parents using a

random integer

(3) Select the first half sub—individuals from parent 1 and

parent 2 (They are named sub—individual 1 and 2)
(4) Find the exclusive sub—individuals from parent 2 for

240

sub—individual 1 and from parent 1 for sub-—
individual 2 (They are named sub—individual 3 and
4, respectively)
(5) Place sub—individual 1 into unfixed positions at the
beginning of offspring 1
(6) Place sub—individual 2 into unfixed positions at the
beginning of offspring 2 :
(7) Position sub—individual 3 into unfixed positions
following sub—individual 1 in offspring 1
(8) Position sub—individual 4 into unfixed positions
following sub—individual 2 in offspring 2
The proportion of parent individuals performing the
one—point crossover operator during a generation is
controlled by the crossover probability , which determines
how frequently the one—point crossover operator is

invoked,

Step 5: Uniform mutation

The goal of the uniform mutation is to exchange two
neighboring genes without violating precedence
relationship in order to create an individual that could not
have been produced by the crossover operator. The
uniform mutation operator serves as a means to avoid
local minima in the search space. This operator can be
ineffective because the genes in neighboring individual
positions could be switched while still representing the
same schedule, Therefore, a mutation on an individual
does not necessarily change the related schedule because
interchanging two activities, which have the same start
time in the job sequence, is likely to change the
individual, but not the related schedule. The uniform
mutation operator is operated as follows:

(1) For each individual from a generation

(2) Generate a real random number

(3) Swap an activity after pivot point with activity at

pivot point if a random number is equal to or less
than mutation probability

Individuals are selected for the uniform mutation based
on user defined mutation probability, which provides an
expected value for the number of mutations to occur per

generation,

His M6z 2007, 12

Step 6: Termination conditions

Three different types of termination conditions can be
determined to stop the run of the Elitist GA. They include
the number of generations, timeout, and the number of
unique schedules,

4. Experimental Results and Analysis

The ‘Elitist GA was programmed using the JAVA
programming language on the Windows XP operation
system, and Microsoft® Office Excel 2003 was selected as
the representation and analysis tool for the data. The
parameters of the algorithm include population size,
crossover and mutation rates. Two output options, full
and summary output, are available for data analysis. This

section presents three computational experiment results.
4.1 Comparison with Heuristic and Other GA

First, a construction project schedule, which was
extracted from the work of Shanmuganayagam (1989),
was used to demonstrate the robustness of the Elitist GA
by comparing the results produced from the Elitist GA
with those obtained from the existing methods, Table 1
shows the schedule information,

Table 1. Schedules Informaiton for Case Example

(Labor) (Equipment)

(Equipment)
A 4 - 3 0 1
B 6 - 8 1 0
C 2 - 4 0 1
D 8 A 2 1 0
E 4 D 4 1 0
F 10 B 2 1 0
G 16 B 4 0 0
H 8 F 2 0 1
[6 C 4 1 0
J 6 E H 5 0 1
K 10 G, | 2 0 1
Maximum availability 8 1 1

To make an impartial comparison with the results
obtained from the work of Chan et al. (1996), all activities

were scheduled using just one resource (Labor, R1) with a

241

fixed resource profile, The population size was set to 50
and the total number of generation was set to 40 so the
total trial size of 2,000 was performed. The crossover and
mutation rates were set to 0.5 and 0.03, respectively.
Table 2 shows the various schedule results in comparison
to the single schedule by the heuristic rule
(Shanmuganayagam 1989) and three schedules produced
by GA-scheduler (Chan et al, 1996).

Table 2. Comparison of Various Schedules by Method

iy ; B
Res Heuristic G ler Elitist GA

No, Req. method {Chan et al, 1996) (this research)
' St St S2 33 Elitist St 82 S3

A 3 6 6 7 8 6 6 6 6
B 6 0 0 0 0 0 0 0 0
C 4 10 10 1 14 6 10 20 6
D 2 10 15 15 19 14 12 10 10
E 4 28 28 28 28 26 28 28 26
F 2 6 6 7 8 14 12 10 8
G 4 6 6 6 6 10 6 6 10
H 2 16 17 18 18 24 22 22 24
| 4 32 32 32 32 8 22 22 18
J 5 22 2 22 22 32 32 3 3k
K 2 28 28 28 28 26 28 28 26

The Elitist GA produced the project duration of 38
days, which is same as those obtained either by the
heuristic rule or by the GA—scheduler, It also generated
1,426 unique schedules, which amounts to 71.30% of the
total schedules of 2000, A uniquely determined schedule
(phenotype) computed using the parallel scheme can be
related more than one individual (genotype), which
means that it is possible for several individuals to have
the same fitness value that is equal to the project
duration, but their starting time should be totally
different. It took the total CPU time of 610 milliseconds
for the algorithm to solve the RCPSP with single
resource. Elitist GA ensures that small populations do
not lose the current best solution in the population, The
Flitist GA can provide several equally good and feasible
scheduling alternatives, which indicate the similar result
to GA—scheduler.

1) Obtained from the top of the individuals in the population of
the last generation

M8 Hlez 2007 12

4.2 Scheduling Project with Multiple Resources

To take into account of the multiple resources,
secondly, the Elitist GA was run on the same example as
used in Section 4.1, Labor (R1) and two types of
equipment (R2 and R3) were considered. It is obvious that
when multiple resources are required, project duration
will make changes, depending on the resource availability
and requirements. As the case of single resource, the
resource availabilities are constant over the project
duration and the resource availabilities of three resources
are assumed to be 8, 1, and I for R1, R2, and R3,
respectively. The population size, crossover and mutation
rates were set to 00, 0.5, and 0.03, respectively, as
evaluated and recommended by Goldberg (1989). The
overall fitness value was obtained for multiple resources
using the parallel scheme, Table 3 shows the partial
schedules for multiple resources. The project duration was
54 days, which was obtained according to the partial
schedules. The major differences between the schedule

Table 3. Partial Schedules for Multiple Resources
hedule generation scheme

Stage Time Complete set Fitness Decision Active
No. (Day) (Cn) Value set set
{Day) (On) (An)
1 0 (-} 0 213 {2
2 6 {2 6 {71,623 {71}
310 {21 10 {643 {76
4 20 21,6 20 {438 {74 8
5 2 {2716} 22 {3 {4, 8}
6 28 {2716 48} 28 {3 5} {3, 5}
7 30 {2716 43 8 30 9 {5}
8 32 (2716438 5} 32 {9 1 {9}
9 38 {2716 438895} 38 {110 {11
10 48 {2716 4389 5 11 48 {10} {10}
11 54 (2716438975 1,100 54 (-} {-]

with single resource and the one with multiple resources
are the expanded project duration and the different

starting time of activities,
4.3 Comparison with Optimal Solutions
Finally, another experiment was conducted to verify the

performance of the Elitist GA by comparing the results
generated from the Elitist GA to those available from the

242

well known optimal and/or lower bound solutions. Nine
large—sized multiple RCPSP were obtained from the
PSPLIB (Kolisch and Sprecher 1996) for this experiment.
The problems consist of 30, 60, and 120 non—dummy
activities, respectively. Each problem instance has four
renewable resources. The overall performance of the
Elitist GA was measured by the means of finding the best
fitness value, which can be considered an optimal and/or
near—optimal solution to the RCPSP. The input
parameter values for the algorithm were set as follows:
Initial population size, crossover and mutation rates were
set to 50, 0.5, and 0,03, respectively. The termination
condition was set to the maximum number of generations
of 100, which brings 5,000 (50x100) trials.

Table 4 shows the minimum fitness values, total
algorithm runtime in millisecond (ms), and the number of
unique schedules ag a result of scheduling nine different
large—sized problems with multiple resources. Figure 5
shows the convergence behaviour for one of three 60—
Activity projects. The Elitist GA found the optimal
solutions for three 30—Activity projects and three 60—
Activity projects, respectively, as they converges to a
single point across the number of generation. It found the
solutions very close to the lower bound solutions for three

120-Activity projects, even though it could not generate

Table 4. Comparison Resuits with Optimal Solutions

1 43 2656 7040 43
30-Act. 2 62 2719 7041 62
3 38 2265 6983 38
1 65 3750 6948 65
60-Act. 2 78 3828 7065 78
3 60 3453 6996 60
1 14 10500 7000 99
120-Act, 2 102 8678 7043 88
3 97 8500 7023 84

2) The optimal solutions for the problems with 30 non—dummy
activities used are known (Demeulemeester and Herroelen 1997),
while for the problem instances with 60 and 120 non—dummy
activities, only heuristic solutions, which are lower bound solution
(Klein and Scholl 1999 for 60—-Activity and Brucker and Knust
2003 for 120-Activity), are known.

e Hez 2007, 12

63

62

61

60

Project duration

59

L e
0 10 20 30 40

50 60 70 80 90

Figure 5. Convergence of Elitist GA

the identical project duration. The algorithm required
more time to solve a larger problem than a smaller one as
expected. It also generated similar number of unique
schedules for each project group.

5. Discussions and Limitations

The standard RCPSP considered in this paper is of
great practical importance because its general model can
be used for application in a wide variety of scheduling
applications, However, the problem needs to be modified
or adjusted to model real construction site conditions.
Some of the examples for modeling real situation using
the Elitist GA are as follows: How to handle if available
resources levels change over time, what if resources, i.e.,
crews can share jobs, what if the resources used are non-
renewable, what if the resources are equipment—oriented,
such as a crane, versus crews made of tradesman, how
can resources be partially applied to more than one
activity or used at a reduced rate, and how to address the
different productivity of resources.

For the improvement of the Elitist GA application, two
point or other crossover methods may also be employed
on a random basis to improve the integrity of building
blocks, even though the Elitist GA used only one—point
crossover to apply the recombination theories
fundamental to the GA. Although the Elitist GA

eliminates infeasible schedules at the stage of random

243

number generator, a hybrid—heuristic method can be
used to assist the algorithm in examining potentially
useful mutations and local minima problem. Finally, the
use of the elitism in GA is to ensure that small
populations do not lose the current best solution in the
population. However, roulette wheel selection has an
exponential selection pressure that drives a solution to
convergence prior to sufficient exploration of the solution
space. The tournament selection can be applied to
overcome the stochastic nature of the selection process in
the Elitist GA since the selection pressure of pair—wise
tournament selection ig consistent regardless of the
contents of the population,

6. Conclusions and Future Studies

This paper presented the development and application
of an Elitist Genetic Algorithm using the parallel schedule
generation scheme for solving a large—sized multiple
RCPSP. Compared with a heuristic and other GA method,
the Elitist GA provides one elitist individual schedule and
several equally good scheduling alternatives for efficient
decision making. The Elitist GA found the optimal
solutions up to 60 non—dummy activity for each of six
standard problems, while it found the solutions very close
to the lower bound solutions for three 120 non—dummy
activity projects. The Elitist GA also shows the capability
to solve a large—sized multiple RCPSP by finding an
optimal and/or near optimal solution within a reasonable
amount of time, Thus, the Elitist GA can be an efficient
algorithm that can apply to solve the large—sized multiple
RCPSP.

This paper will help researchers and/or practitioners in
the construction project scheduling software area with
alternative means to find the optimal schedules by
utilizing the advantages of the Elitist GA. More study is
being conducted to find optimal solutions by
incorporating a local search algorithm into the Elitist GA,
In addition, a user friendly interface of the Elitist GA is
under development for running numerous RCPSP at the

same time,

Mg Hez 2007. 12

References

1. Alcaraz, J. and Maroto, C. (2001). “A Robust Genetic
Algorithm for Resource Allocation in Project
Scheduling.” Annals of Operations Research, 102, pp.
83-109.

2. Bedworth, D. D, and Bailey, J. E. (1982). Integrated
Production Control Systems—Management, Analysis,
Design, Wiley, New York. N.Y.

3. Blazewicz, J., Lenstra, J. K., and Rinnooy Kan, A, H.
G. (1983)."Scheduling Subject to Resource
Constraint: Classification and Complexity.”Discrete
Applied Mathematics, 5, pp. 11-24.

4. Brucker, P, and Knust, S. (2003). “Lower Bounds for
Resource-Constrained Project Scheduling Problems.”
European Journal of Operations Research, 149, pp.
302-313.

5. Brucker, P., Knust, S., Schoo, A., and Thiele, O.
(1998). “A Branch and Bound Algorithm for the
Resource—Constrained Project Scheduling Problems.”
European Journal of Operations Research, 107(2),
pp. 272-288,

6. Chan, W., Chua, D. K. H., and Kannan, G. (1996),
“Construction Resource Scheduling with Genetic
Algorithms.” Journal of Construction Engineering
and Management, ASCE, 122(2), pp. 125-132.

7. De Jong, K. A. (1975). An Analysis of the Behavior of
a Class of Genetic Adaptive Systems, Ph.D.
Dissertation, University of Michigan, Ann Arbor,
Mich,

8. Demeulemeester, E. L. and Herroelen, W. S, (1997).
“New Benchmark Results for the Resource
Constrained Project Scheduling Problem.”
Management Science, 43(11), pp. 1485-1492.

9. Goldberg, D, E. (1989). Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison—
Wesley Publishing Company, Inc., Reading,
Massachusetts,

10. Hartmann, S. (1998).“A Competitive Genetic

Algorithm for Resource—-Constrained Project
Scheduling.”Naval Research Logistics, 45, pp. 733~

244

750.

11. Hartmann, S. (2002). “A Self-Adapting Genetic
Algorithm for Project Scheduling under Resource
Constraints.”Naval Research Logistics, 49, pp. 433—
448,

12 Hegazy, T. (1999). “Optimization of Resource
Allocation and Leveling Using Genetic Algorithms,”
Journal of Construction Engineering and
Management, ASCE, 125(3), pp. 167-175.

13. Hegazy, T. and Kassab, M. (2003). “Resource
Optimization Using Combined Simulation and
Genetic Algorithms.” Journal of Construction
Engineering and Management, ASCE, 129(6), pp.
698-705, ‘

14, Hindi, K. S., Yang, H., and Fleszar, K. (2002), “An
Evolutionary Algorithm for Resource—Constrained
Project Scheduling.” IEEE Transactions on
Evolutionary Computation, 6(5), pp. 512518,

15. Holland, J. K. (1975). Adaptation in Neural and
Artificial Systems, University of Michigan Press,
Ann Arbor, ML

16. Kelley, J. E. Jr, (1963).“The Critical-Path Method:
Resources Planning and Scheduling.”In J. F. Muth
and G. L. Thompson (Eds.), Industrial Scheduling,
Prentice—Hall, New Jersey, pp. 347-365.

17. Klein, R. and Scholl, A. (1999). “Computing Lower
Bounds by Destructive Improvement: An Application
to Resource—Constrained Project Scheduling.”
European Journal of Operational Research, 112, pp.
"322-346,

18. Kohlmorgen, U., Schmeck, H., and Haase, K,
(1999). “Experiences with Fine-Grained Parallel
Genetic Algorithms,” Annals of Operations Research,
90, pp. 203-219,

19. Kolisch, R. and Sprecher, A, (1996). “PSPLIB — A

Project Scheduling Problem Library.” European

Journal of Operational Research, 96, pp. 205-216,

Lee, J.-K. and Kim, Y.-D. (1996). “Search

Heuristics for Resource—Constrained Project

20,

Scheduling.” The Journal of the Operational
Research Society, 47(5), pp. 678-689.

SR g MR =R E Hisd K6z 2007, 12

21 Leu, S. and Yang, C. (1999). “GA-Based Multicriteria
Optimal Model for Construction Scheduling,” Journal
of Construction Engineering and Management,
ASCE, 125(6), pp. 420-427.

22. Leu, S., Chen, A., and Yang, C. (1999). ‘Fuzzy
Optimal Model for Resource—Constrained
Construction Scheduling.”Journal of Computing in
Civil Engineering, 13(3), pp. 207-216.

23. Moselhi, O. and Lorterapong, P. (1993). “Least
Impact Algorithm for Resource Allocation.”
Canadian Journal of Civil Engineering, CSCE, 20(2),
pp. 180-188.

24, Shanmuganayagam, V. (1989). “Current Float
Techniques for Resource Scheduling.”Journal of
Construction Engineering and Management, ASCE,
115(3), pp. 401-411.

25. Toklu, Y. C. (2002). “Application of Genetic
Algorithms to Construction Scheduling With or
Without Resource Constraints,”Canadian Journal of
Civil Engineering, 29, pp. 421-429.

26. Valls, V., Ballestin, F., and Quintanilla, S. (2005).
“Justification and RCPSP: A Technique That Pays.”
European Journal of Operational Research, 165, pp.
375-386.

27. Zhuang, M. and Yassine, A. A. (2004). “Task
Scheduling of Parallel Development Projects using
Genetic Algorithm.” Proceedings of ASME 2004
International Design Engineering Technical
Conferences and Computers and Information in
Engineering Conference, Salt Lake City, Utah USA,
September 28—-October 2, 2004, pp. 1-11.

rAlEY: 2007.06.29
AAREE Y 2007.08.31

245

