• Title/Summary/Keyword: time-interval signal

Search Result 302, Processing Time 0.026 seconds

A Study on The Method of Real-Time Arrythmia monitoring Using Modified Chain Coding (Modified Chain Coding 을 이용한 실시간 부정맥 모니터링 기법에 관한 연구)

  • Yun, Ji-Young;Lee, Jeong-Whan;Lee, Myoung-Ho
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.31-35
    • /
    • 1996
  • This paper presents a real time algorithm for monitoring of the arrythmia of ECG signal. A real time monitoring, following by detecting a QRS complex, is the most important. Using 2-dimensional time-delay coordinates which are reconstructed by the phase portrait plotting special trajectory, we detect QRS complexes. In this study, arrythmias are detected by matching the past standard template with tile present pattern when changing abruptly In order to matching with each other, we propose modified chain coding algorithm which applies vetor table consisting of eight orthonormal code(=binary code) to the phase portraits. This algorithm using logical function increases the weight if exceeding to the threshold determinded by correlation value and the distance from a straight line(y=x). Evaluating the performance of the proposed algorithm, we use standard MIT/BIH database. The results are fellowing, 1) Improve the speed of matching template than that of cross-correlation ever has been used. 2) Because the proposed algorithm is robust to varing fiducial point, it is possible to monitor the ECG signal with irregular RR interval. 3) In spite of baseline wandering owing to the low frequency noise, monitoring performance is not reduced.

  • PDF

Atrial Fibrillation Pattern Analysis based on Symbolization and Information Entropy (부호화와 정보 엔트로피에 기반한 심방세동 (Atrial Fibrillation: AF) 패턴 분석)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.1047-1054
    • /
    • 2012
  • Atrial fibrillation (AF) is the most common arrhythmia encountered in clinical practice, and its risk increases with age. Conventionally, the way of detecting AF was the time·frequency domain analysis of RR variability. However, the detection of ECG signal is difficult because of the low amplitude of the P wave and the corruption by the noise. Also, the time·frequency domain analysis of RR variability has disadvantage to get the details of irregular RR interval rhythm. In this study, we describe an atrial fibrillation pattern analysis based on symbolization and information entropy. We transformed RR interval data into symbolic sequence through differential partition, analyzed RR interval pattern, quantified the complexity through Shannon entropy and detected atrial fibrillation. The detection algorithm was tested using the threshold between 10ms and 100ms on two databases, namely the MIT-BIH Atrial Fibrillation Database.

The Time Synchronization Signals of the GNSS Receiver for KSLV-II and Their Performance Assessment (한국형발사체 위성항법수신기의 시각동기신호 생성 및 성능 평가)

  • Kwon, Byung-Moon;Shin, Yong-Sul;Ma, Keun-Su;Yun, Kwang-Ho;Seo, Hung-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.11
    • /
    • pp.812-820
    • /
    • 2019
  • The GNSS receiver for KSLV(Korea Space Launch Vehicle)-II provides real-time navigation data as well as precise time and time interval. The precise time signals provided by the GNSS receiver that can be used for the time synchronization between onboard systems, and between the onboard systems and ground stations have the forms of the 1PPS(One Pulse Per Second) and IRIG-B(Inter-Range Instrumentation Group Time Code B) which are synchronized with UTC(Coordinated Universal Time). A signal for timing faults also informs whether the time synchronization signals are available or not. This paper describes the time synchronization signals of the GNSS receiver for KSLV-II and their performance assessment.

Detection of Apnea Signal using UWB Radar based on Short-Time-Fourier-Transform (국소 퓨리에 변환 기반 레이더 신호를 활용한 무호흡 검출)

  • Hwang, Chaehwan;Kim, Suyeol;Lee, Deokwoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.151-157
    • /
    • 2019
  • Recently, monitoring respiration of people has been of interest using non-invasive method. Among the vital signals usually used for indicating health status, non-invasive and portable device based monitoring respiratory status is practically useful and enable one to promptly deal with abnormal physical status. This paper proposes the approach to real-time detection of apnea signal based on Short-Time-Fourier-Transform(STFT). Contrary to the analysis of a signal in frequency domain using Fast-Fourier Transform, this paper employs Short-time-Fourier-Transform so that frequency response can be analyzed in short time interval. The respiratory signal is acquired using UWB radar sensor that enables one to obtain respiration signal in contactless way. Detection of respiratory status is carried out by analyzing frequency response, and classification of respiratory status can be provided. In particular, STFT is employed to analyze respiratory signal in real-time, leading to effective analysis of the respiratory status in practice. In the case of existence of noise in the signal, appropriate filtering process is employed as well. The proposed method is straightforward and is workable in practice to analyze the respiratory status of people. To evaluate the proposed method, experimental results are provided.

A Study on Improving Pitch Search by Varying the number of Subframes for Vocoder (보코더에서 서브프레임 수의 변화를 이용한 피치검색 성능 개선에 관한 연구)

  • Baek, Geum-Ran;Bae, Myung-Jin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.83-88
    • /
    • 2012
  • The pitch searching is a very important process in a vocoder. Generally, the method of pitch searching method is used by highlighting the periodicity, where a correlation is identified with the signal by changing the interval of two pulses. When the correlation value is highest, the pitch can be found by the pulse interval because it is the repetition interval with most striking period. There are many methods to solve this problem and search the pitch by dividing a frame into many subframes, but there is too much calculation to solve. A method in this paper is suggested to vary the number of subframes by predicting the amplitude change rate in a frame. If this method is applied, the general pitch searching performance will be improved because the accuracy may be enhanced without affecting the sound quality in the synthesized signal after parameter transmission; and the pitch searching time may be reduced.

Optimal R Wave Detection and Advanced PVC Classification Method through Extracting Minimal Feature in IoT Environments (IoT 환경에서 최적 R파 검출 및 최소 특징점 추출을 통한 향상된 PVC 분류방법)

  • Cho, Iksung;Woo, Dongsik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.4
    • /
    • pp.91-98
    • /
    • 2017
  • Previous works for detecting arrhythmia have mostly used nonlinear method such as artificial neural network, fuzzy theory, support vector machine to increase classification accuracy. Most methods require higher computational cost and larger processing time. Therefore it is necessary to design efficient algorithm that classifies PVC(premature ventricular contraction) and decreases computational cost by accurately detecting minimal feature point based on only R peak through optimal R wave. We propose an optimal R wave detection and PVC classification method through extracting minimal feature point in IoT environment. For this purpose, we detected R wave through optimal threshold value and extracted RR interval and R peak pattern from noise-free ECG signal through the preprocessing method. Also, we classified PVC in realtime through RR interval and R peak pattern. The performance of R wave detection and PVC classification is evaluated by using record of MIT-BIH arrhythmia database. The achieved scores indicate the average of 99.758% in R wave detection and the rate of 93.94% in PVC classification.

A Study on an Optimal Respiration Rate for the ANS Assessment based on RSA Analysis (RSA분석과 자율신경기능을 평가하는 호흡주기 설정에 관한 연구)

  • Lee, Sang-Myung;Lee, Sung-Jun;Ahn, Jae-Mok;Kim, Jeom-Keun
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.503-511
    • /
    • 2007
  • Heart rate variability(HRV) is the clinical consequence of various influences of the autonomic nervous system(ANS) on heart beat. HRV can estimate the potential physiologic rhythm from the interval between consecutive beats(RR interval or HRV data), but cardiovascular system governed by ANS is in relation to respiration and autonomic regulation. It is known as RSA representing respiration-related HR rhythmic oscillation. Because the mechanism linking the variability of HR to respiration is complex, it has so far been unknown well. In this paper, we tried to evaluate 5-min RR interval segments under control of respiration in order to find out a proper respiration rate that can estimate the ANS function. 10 healthy volunteers were included to evaluate 5-min HRV data under 4 different respiration-controlled environments; 0.03Hz, 0.1Hz, 0.2Hz, and 0.4Hz respiration. HRV data were analyzed both in the frequency and the time domain, with cross-correlation coefficient(cross-coeff.) for HRV and respiration signal. The results showed maximum cross-coeff. of 0.84 at 0.1 Hz and minimum that of 0.16 at 0.4Hz respiration. Cross-coeff was decreased at a faster rate from 0.1Hz respiration. All mean SDNN, RMSSD, and pNN50 of time domain measures were 108.7ms, 71.85ms, and 28.47%, respectively, and LF, HF, and TP of frequency domain measures were $12,722ms^2,\;658.8ms^2$, and $7,836.64ms^2$ at 0.1Hz respiration, respectively. In conclusion, 0.1Hz respiration was observed to be very meaningful from time domain and frequency domain analysis in relation to respiration and autonomic regulation of the heart.

R Wave Detection Considering Complexity and Arrhythmia Classification based on Binary Coding in Healthcare Environments (헬스케어 환경에서 복잡도를 고려한 R파 검출과 이진 부호화 기반의 부정맥 분류방법)

  • Cho, Iksung;Yoon, Jungoh
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.4
    • /
    • pp.33-40
    • /
    • 2016
  • Previous works for detecting arrhythmia have mostly used nonlinear method to increase classification accuracy. Most methods require accurate detection of ECG signal, higher computational cost and larger processing time. But it is difficult to analyze the ECG signal because of various noise types. Also in the healthcare system based IOT that must continuously monitor people's situation, it is necessary to process ECG signal in realtime. Therefore it is necessary to design efficient algorithm that classifies different arrhythmia in realtime and decreases computational cost by extrating minimal feature. In this paper, we propose R wave detection considering complexity and arrhythmia classification based on binary coding. For this purpose, we detected R wave through SOM and then RR interval from noise-free ECG signal through the preprocessing method. Also, we classified arrhythmia in realtime by converting threshold variability of feature to binary code. R wave detection and PVC, PAC, Normal classification is evaluated by using 39 record of MIT-BIH arrhythmia database. The achieved scores indicate the average of 99.41%, 97.18%, 94.14%, 99.83% in R wave, PVC, PAC, Normal.

Development of an Integer Algorithm for Computation of the Matching Probability in the Hidden Markov Model (I) (은닉마르코브 모델의 부합확률연산의 정수화 알고리즘 개발 (I))

  • 김진헌;김민기;박귀태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.11-19
    • /
    • 1994
  • The matching probability P(ο/$\lambda$), of the signal sequence(ο) observed for a finite time interval with a HMM (Hidden Markov Model $\lambda$) indicates the probability that signal comes from the given model. By utilizing the fact that the probability represents matching score of the observed signal with the model we can recognize an unknown signal pattern by comparing the magnitudes of the matching probabilities with respect to the known models. Because the algorithm however uses floating point variables during the computing process hardware implementation of the algorithm requires floating point units. This paper proposes an integer algorithm which uses positive integer numbers rather than float point ones to compute the matching probability so that we can economically realize the algorithm into hardware. The algorithm makes the model parameters integer numbers by multiplying positive constants and prevents from divergence of data through the normalization of variables at each step. The final equation of matching probability is composed of constant terms and a variable term which contains logarithm operations. A scheme to make the log conversion table smaller is also presented. To analyze the qualitive characteristics of the proposed algorithm we attatch simulation result performed on two groups of 10 hypothetic models respectively and inspect the statistical properties with repect to the model order the magnitude of scaling constants and the effect of the observation length.

  • PDF

Basic Study for Stress Analysis Using an Unconstrained BCG Monitoring System (무구속 심탄도 모니터링 시스템을 이용한 스트레스 분석 기초연구)

  • Noh, Yun-Hong;Jeong, Do-Un
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.118-123
    • /
    • 2011
  • Heart related diseases mainly caused by heavy work load and increasing stress in human daily life. Therefore, researches on mobile healthcare monitoring for daily life has been carried out. Notably, wearable healthcare monitoring system which has least restriction has been tried to provide an emergency alert of abnormal heart rate. In this study, we developed chair type unconstrained BCG measurement system which able to perform continuous heart status monitoring at the office and daily life in the unconstrained way. Furthermore, adaptive threshold is used to detect the heart rate from BCG signals. The HRV(heart rate variability) is calculated from heart rate interval. ECG signal measured using conventional method and BCG signal measured using unconstraint system are carried out simultaneously for the purpose of performance evaluation. From the comparison result, BCG signal shows a similar heart beat characteristic as ECG signal. This proves the possibility of practical implementation of unconstraint healthcare monitoring system. In addition, medical examination like valsalva maneuver is performed to observe the changes in HRV due to stress. By performing valsalva maneuver, heart is said to be placed under an artificial physical stress condition. Under this artificial physical stress condition, the time and frequency domain of HRV parameters are evaluated.