• Title/Summary/Keyword: time-dependent strength

Search Result 277, Processing Time 0.022 seconds

Construction stage analysis of Kömürhan Highway Bridge using time dependent material properties

  • Altunisik, Ahmet Can;Bayraktar, Alemdar;Sevim, Baris;Adanur, Suleyman;Domanic, Arman
    • Structural Engineering and Mechanics
    • /
    • v.36 no.2
    • /
    • pp.207-223
    • /
    • 2010
  • The aim of this study concerns with the construction stage analysis of highway bridges constructed with balanced cantilever method using time dependent material properties. K$\ddot{o}$m$\ddot{u}$rhan Highway Bridge constructed with balanced cantilever method and located on the 51st km of Elazi$\check{g}$-Malatya, Turkey, highway over Firat River is selected as an application. Finite element models of the bridge are modelled using SAP2000 program. Geometric nonlinearity is taken into consideration in the analysis using P-Delta plus large displacement criterion. The time dependent material strength variations and geometric variations are included in the analysis. Elasticity modulus, creep and shrinkage are computed for different stages of the construction process. The structural behaviour of the bridge at different construction stages has been examined. Two different finite element analyses with and without construction stages are carried out and results are compared with each other. As analyses result, variation of internal forces such as bending moment, axial forces and shear forces for bridge deck and column are given with detail. It is seen that construction stage analysis has remarkable effect on the structural behaviour of the bridge.

Construction stage analysis of fatih sultan mehmet suspension bridge

  • Gunaydin, Murat;Adanur, Suleyman;Altunisik, Ahmet Can;Sevim, Baris
    • Structural Engineering and Mechanics
    • /
    • v.42 no.4
    • /
    • pp.489-505
    • /
    • 2012
  • In this study, it is aim to perform the construction stage analysis of suspension bridges using time dependent material properties. Fatih Sultan Mehmet Suspension Bridge connecting the Europe and Asia in Istanbul is selected as an example. Finite element models of the bridge are modelled using SAP2000 program considering project drawing. Geometric nonlinearities are taken into consideration in the analysis using P-Delta large displacement criterion. The time dependent material strength variations and geometric variations are included in the analysis. Because of the fact that the bridge has steel structural system, only prestressing steel relaxation is considered as time dependent material properties. The structural behaviour of the bridge at different construction stages has been examined. Two different finite element analyses with and without construction stages are carried out and results are compared with each other. As analyses result, variation of the displacement and internal forces such as bending moment, axial forces and shear forces for bridge deck and towers are given with detail. It is seen that construction stage analysis has remarkable effect on the structural behaviour of the bridge.

Strength deterioration of reinforced concrete column sections subject to pitting

  • Greco, Rita;Marano, Giuseppe Carlo
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.643-671
    • /
    • 2015
  • Chloride induced reinforcement corrosion is widely accepted to be the most frequent mechanism causing premature degradation of reinforced concrete members, whose economic and social consequences are growing up continuously. Prevention of these phenomena has a great importance in structural design, and modern Codes and Standards impose prescriptions concerning design details and concrete mix proportion for structures exposed to different external aggressive conditions, grouped in environmental classes. This paper focuses on reinforced concrete column section load carrying capacity degradation over time due to chloride induced steel pitting corrosion. The structural element is considered to be exposed to marine environment and the effects of corrosion are described by the time degradation of the axial-bending interaction diagram. Because chlorides ingress and consequent pitting corrosion propagation are both time-dependent mechanisms, the study adopts a time-variant predictive approach to evaluate residual strength of corroded reinforced concrete columns at different lifetimes. Corrosion initiation and propagation process is modelled by taking into account all the parameters, such as external environmental conditions, concrete mix proportion, concrete cover and so on, which influence the time evolution of the corrosion phenomenon and its effects on the residual strength of reinforced concrete columns sections.

A STUDY ON THE TENSILE BOND STRENGTH BETWEEN VARIOUS RESIN TRAY MATERIALS AND RUBBER IMPRESSION MATERIALS (수종의 트레이 레진과 고무 인상재간의 인장 접착강도에 관한 연구)

  • Song Kyung-Won;Lim Ju-Hwan;Cho In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.4
    • /
    • pp.351-365
    • /
    • 2001
  • For accurate impression taking, accurate impression material, solid individual tray, and bond strength between impression materials and resin tray are important factors. The purpose of this study was to evaluate tensile bond strength of rubber impression materials to various tray resin materials. This study tested the time dependent tensile bond strength between commercial brands or poly ether, polysulfide, additional silicone impression materials and commercial brands of self curing tray resin. light activited tray resin when applying adhesive Resin specimens were made with 20mm in diameter, 2mm in thickness. 1 made total 360 specimens, 10 per each group and the tensile bond strength was measured by using the Instron($M100EC^{(R)}$, Mecmesin Co., England). The results were as follows ; Comparisons of various impression materials. 1. In case of Impregum $F^{(R)}$, the bond strength of tray resin was decreased in order of SR $Ivolen^{(R)}$, Ostron $100^{(R)}$ Instant tray $mix^{(R)}$, $Lightplast^{(R)}$. All groups excluding Ostron $100^{(R)}$, Instant tray $mix^{(R)}$ are significant difference (p<0.05). Drying time after applying adhesive, the tensile bond strength of tray resin was insignificantly decreased in order of 10 min drying time group. 1 min drying time group. 5 min drying time group. 2. In case of Permlastic $regular^{(R)}$ the bond strength of tray resin was insignificantly decreased in order of Ostron $100^{(R)}$. SR $Ivolen^{(R)}$, Instant tray $mix^{(R)}$ $Lightplast^{(R)}$. About drying time after applying adhesive, the tensile bond strength of tray resin was significantly decreased in order of 5 min drying time group, 10 min drying time group, 1 min drying time group(p<0.05). 3. In case of Exaflex $regular^{(R)}$. the bond strength of tray resin was decreased in order of $Lightplast^{(R)}$, SR $Ivolen^{(R)}$, Instant tray $mix^{(R)}$, Ostron $100^{(R)}$. $Lightplast^{(R)}$ was significant difference(p<0.05). About drying time after applying adhesive, the tensile bond strength of tray resin was decreased in order of 5 min drying time group, 10 min drying time group, 1 min drying time group(p<0.05). Especially 5 min ding time group was significant difference(p<0.05). According to the results of this study, we can see the greatest tensile bond strength when using Impregrm $F^{(R)}$ and Permlastic $regular^{(R)}$ with self curing tray resin, when using Exaflex $regular^{(R)}$ with light activated tray resin In my opinion, adhesive should be dried more than 5 min before impression taking to achieve the greatest tensile bond strength.

  • PDF

Construction stages analyses using time dependent material properties of concrete arch dams

  • Sevim, Baris;Altunisik, Ahmet C.;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • v.14 no.5
    • /
    • pp.599-612
    • /
    • 2014
  • This paper presents the effects of the construction stages using time dependent material properties on the structural behaviour of concrete arch dams. For this purpose, a double curvature Type-5 arch dam suggested in "Arch Dams" symposium in England in 1968 is selected as a numerical example. Finite element models of Type-5 arch dam are modelled using SAP2000 program. Geometric nonlinearity is taken into consideration in the construction stage analysis using P-Delta plus large displacement criterion. In addition, the time dependent material strength variations and geometric variations are included in the analysis. Elasticity modulus, creep and shrinkage are computed for different stages of the construction process. In the construction stage analyses, a total of 64 construction stages are included. Each stage has generally $6000m^3$ concrete volume. Total duration is taken into account as 1280 days. Maximum total step and maximum iteration for each step are selected as 200 and 50, respectively. The structural behaviour of the arch dam at different construction stages has been examined. Two different finite element analyses cases are performed. In the first case, construction stages using time dependent material properties are considered. In the second case, only linear static analysis (not considered construction stages) is taken into account. Variation of the displacements and stresses are obtained from the both analyses. It is highlighted that construction stage analysis using time dependent material strength variations and geometric variations has an important effect on the structural behaviour of arch dams. The maximum longitudinal, transverse and vertical displacements obtained from construction stages and static analyses are 1.35 mm and 0 mm; -8.44 and 6.68 mm; -4.00 and -9.90 mm, respectively. In addition, vertical displacements increase from the base to crest of the dam for both analyses. The maximum S11, S22 and S33 stresses are obtained as 1.60MPa and 2.84MPa; 1.39MPa and 2.43MPa; 0.60MPa and 0.50MPa, respectively. The differences between maximum longitudinal, transverse, and vertical stresses obtained from construction stage and static analyses are 78%, 75%, and %17, respectively. On the other hand, there is averagely 12% difference between minimum stresses for all three directions.

A cognitive model for forecasting progress of multiple disorders with time relationship

  • Kim, Soung-Hie;Park, Wonseek;Chae, In-Ho
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.505-510
    • /
    • 1996
  • Many diseases cause other diseases with strength of influences and time intervals. Prognostic and therapeutic assessments are the important part of clinical medicine as well as diagnostic assessments. In cases where a patient already has manufestations of multiple disorders (complications), progress forecasting and therapy decision by physicians without support tools are very dificult: physicians often say that "Once complications set in, the patient may die". Treating complications are difficult tasks for physicians, because they have to consider all of the complexities, possibilities and interactions between the diseases. The prediction of multiple disorders has many bundles that arise from such time-dependent interrelationships between diseases and nonlinear progress. This paper proposes a model based on time-dependent influences, which appropriately describes the progress of mulitple disorders, and gives some modificaitons for applying this model to medical domains: time-dependent influence matrix manifestation vector, therapy efficacy matrix, S-shaped curve approximation, definitions of which are provided. This research proposes an algorithm for forecasting the state of each disease on the time horizon and for evaluation of therapy alternatives with not toy example, but real patient history of multiple disorders.disorders.

  • PDF

Strength Prediction of Mixing Condition and Curing Time Using Cement-Admixed Marine Clay (해성점토를 이용한 시멘트 혼합토의 배합조건 및 재령일별 강도 예측)

  • Jeon, Je-Sung;Park, Min-Chul;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.45-56
    • /
    • 2013
  • Abrams equation could be effectively applied to predict strength of cement-admixed clay and clay-water content to cement content ratio is a fundamental parameter for governing strength. This paper analyses unconfined compression strength varying with $w_c/C$ and curing time using laboratory test results. An attempt is made to identify strength of composite soil of cement and clay according to variation of Abrams coefficients and curing time. The value B, which was considered to be constant value in past researches, needs to be considered as parameter variable with curing time. From Abrams equation a correlation was formed for unconfined compression strength with mixing conditions by $w_c/C$ and curing time as dependent variable. Regression results in this paper could be used to predict strength of cement-admixed clay at various mixing conditions.

Mechanical Properties of the Alkali-Activated Slag Mortar with Gypsum (석고를 혼합한 알칼리 활성화 슬래그 모르타르의 특성)

  • Kim, Tae Wan;Hahm, Hyung Gil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.109-116
    • /
    • 2012
  • This study investigated the effects of blast furnace slag mortars activated with sodium hydroxide(NaOH) and gypsum in relation to flow, setting time and compressive strength. The parameters in this studied was the gypsum ratio 0 to 50%, 3M and 6M of activator concentration and $20{\pm}2^{\circ}C$ and $35{\pm}2^{\circ}C$ of curing temperatures. The results of flow was increase, setting time was increase as the amount of gypsum increases. But the results of compressive strength was dependent on the gypsum ratio, indicating that the compressive strength increased with the increase of the amount of gypsum until a certain limit, beyond which the strength decreased quickly.

Time-dependent characteristics of viscous fluid for rock grouting (암반 그라우팅을 위한 점성유체의 시간의존 특성 분석)

  • Lee, Jong-Won;Kim, Ji-Yeong;Weon, Jo-Hyun;Oh, Tae-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.465-481
    • /
    • 2022
  • Rock grouting is important to improve the waterproof efficiency and mechanical strength of rock medium with joint for utilizing the underground rock space such as tunnel. The grouting materials typically has been used the cement materials, which represent Bingham fluid model. This model can express the relationship of viscosity and yield strength. In addition, it is dependent with elapsed time. The grouting injection performance can be deteriorated with an increase of viscosity and yield strength in the grouting process if the time dependence is ignored. Therefore, in this study, the characteristics of viscosity and yield strength were investigated according to water-cement ratio and time dependence in the laboratory test. Numerical simulation was carried out to investigate the grouting performance according to the time dependence of characteristics in terms of the viscosity model. Given the results, the grouting injected distance and cumulative grout volume were significantly decreased when the time dependence of grouting material was considered. This study, considering the characteristics according to the time dependence of viscosity and yield strength, will be meaningful to the design of grouting injection in field applications.

Stress relaxation effect on uniaxial compressive strength values of a silt type soil

  • Eren Komurlu
    • Geomechanics and Engineering
    • /
    • v.32 no.5
    • /
    • pp.495-502
    • /
    • 2023
  • In this study, stress relaxation tests were carried out by keeping silt type soil specimens under different strain levels. Decreases in the stress values with time data was collected to better understand the effect of the strain level on the relaxation properties of soil specimens. In addition, the stress relaxation effect on the uniaxial compressive strength (UCS) values of the specimens was investigated with a series of tests. According to the results obtained from this study, the UCS values of the silt specimens significantly vary as a result of the stress relaxation effect. The UCS values were determined to increase with an increase of relaxation strain level to a threshold value. On the other hand, the UCS values were found to be affected adversely in case of high stress levels at the initiation of the relaxation, which are close to the peak level.