• Title/Summary/Keyword: time-dependent effect

Search Result 2,013, Processing Time 0.032 seconds

Growth Inhibitory Effects of Sesamolin from Sesame Seeds on Human Leukemia HL-60 Cells (참깨에서 분리된 세사몰린의 백혈병 세포주 HL-60 생장억제 효과)

  • Kim, Kwan-Su;Kang, Sam-Sik;Ryu, Su-Noh
    • Korean Journal of Pharmacognosy
    • /
    • v.34 no.3 s.134
    • /
    • pp.237-241
    • /
    • 2003
  • This study was carried out to test the growth inhibitory effects of sesamolin obtained from sesame seeds. Sesamolin inhibited the growth of human leukemia HL-60 cells in cultures and the synthesis of macromolecules in dose- and time-dependent manners. Sesamolin in the $60{\sims}100\;{\mu}g/ml$ range was cytostatic. At concentrations greater than $200\;{\mu}g/ml$ sesamolin was cytocidal to HL-60 cells and at $60\;{\mu}g/ml$ inhibited the synthesis of DNA, RNA and protein in HL-60 cells by 35.1, 6.1, and 5.3%, whereas at $200\;{\mu}g/ml$ these inhibitions were 86.8%, 81.5% and 96.7%, respectively. The inhibitory effect of sesamolin on DNA synthesis was irreversible.

Apoptosis-inducing Effect of Takrisodokyeum Extract in Androgen Independent Prostate Cancer Cells (남성호르몬 비의존형 전립선 암세포에서 탁리소독음(托裏消毒飮) 추출물의 세포고사 유도 효과)

  • Lee, Hyung-Jae;Kwon, Kang-Beom;Shin, Byung-Cheul;Kim, Eun-Kyung;Han, Mi-Jeong;Song, Mi-Young;Lee, Young-Rae;Park, Byung-Hyun;Ryu, Do-Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.4
    • /
    • pp.861-865
    • /
    • 2006
  • Takrisodokyeum (TRSDY) has been known to exert anti-tumoral activity in Korea. However, its molecular mechanism of action is not understood. In this study, we found that TRSDY induced apoptosis in androgen-independent prostate cancer DU145 cells as evidenced by DNA fragmentation and chromatine condensation in hoechst 33342 dye staining. Our data demonstrated that TRSDY-induced apoptotic cell death was accompanied by increases of PTEN and Par-4 in a time-dependent manner Taken together, these results suggest that TRSDY induce PTEN and Par-4 expression, and eventually lead to apoptotic cell death in androgen independent prostate cancer DU145 cells.

Inhibition of Oxidative Damage by Phlorotannins from Ecklonia cava in Normal Human Dermal Fibroblasts

  • Kim, Moon-Moo;Rajapakseb, Niranjan;Kim, Se-Kwon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.126-135
    • /
    • 2006
  • Phlorotannins which is oligomeric polyphenol of phloroglucinol unit were isolated from solvent fractions of methanolic extract of the brown alga, Ecklonia cava (EC). The inhibitory effects of phlorotannins from EC solvent fractions on oxidative stress were examined in human dermal fibroblasts (HDFs) related to wrinkle formation. Among the solvent fractions, phlorotannins from ethyl acetate fraction exerted the highest scavenging effect on DPPH radical, hydroxyl radical and alkyl radical analyzed by electron spin resonance (ESR) spectroscopy. The levels of intracellular reactive oxygen species (ROS) and lipid peroxidation were measured using 2',7'-dichlorofluorescin diacetate (DCFH-DA) and diphenyl-1-pyrenylphosphine (DPPP), respectively. Their levels were significantly decreased in the presence of phlorotannins from ethyl acetate fraction, compared with other fractions obtained from EC extract (P < 0.01). Furthermore, intracellular glutathione (GSH) level was significantly increased in a time dependent manner by the phlorotannins. Therefore, these results suggest that phlorotannins from EC extract could have a therapeutic potential for prevention and treatment of several diseases such as wrinkle formation related to oxidative stress.

  • PDF

Peroxiredoxin 3 Has Important Roles on Arsenic Trioxide Induced Apoptosis in Human Acute Promyelocytic Leukemia Cell Line via Hyperoxidation of Mitochondrial Specific Reactive Oxygen Species

  • Mun, Yeung-Chul;Ahn, Jee Young;Yoo, Eun Sun;Lee, Kyoung Eun;Nam, Eun Mi;Huh, Jungwon;Woo, Hyun Ae;Rhee, Sue Goo;Seong, Chu Myong
    • Molecules and Cells
    • /
    • v.43 no.9
    • /
    • pp.813-820
    • /
    • 2020
  • NB4 cell, the human acute promyelocytic leukemia (APL) cell line, was treated with various concentrations of arsenic trioxide (ATO) to induce apoptosis, measured by staining with 7-amino-actinomycin D (7-AAD) by flow cytometry. 2', 7'-dichlorodihydro-fluorescein-diacetate (DCF-DA) and MitoSOX™ Red mitochondrial superoxide indicator were used to detect intracellular and mitochondrial reactive oxygen species (ROS). The steady-state level of SO2 (Cysteine sulfinic acid, Cys-SO2H) form for peroxiredoxin 3 (PRX3) was measured by a western blot. To evaluate the effect of sulfiredoxin 1 depletion, NB4 cells were transfected with small interfering RNA and analyzed for their influence on ROS, redox enzymes, and apoptosis. The mitochondrial ROS of NB4 cells significantly increased after ATO treatment. NB4 cell apoptosis after ATO treatment increased in a time-dependent manner. Increased SO2 form and dimeric PRX3 were observed as a hyperoxidation reaction in NB4 cells post-ATO treatment, in concordance with mitochondrial ROS accumulation. Sulfiredoxin 1 expression is downregulated by small interfering RNA transfection, which potentiated mitochondrial ROS generation and cell growth arrest in ATO-treated NB4 cells. Our results indicate that ATO-induced ROS generation in APL cell mitochondria is attributable to PRX3 hyperoxidation as well as dimerized PRX3 accumulation, subsequently triggering apoptosis. The downregulation of sulfiredoxin 1 could amplify apoptosis in ATO-treated APL cells.

Effect of pH on the Stability of Green tea Catechins (녹차 카테킨류의 pH에 대한 안정성 연구)

  • 박영현;원은경;손동주
    • Journal of Food Hygiene and Safety
    • /
    • v.17 no.3
    • /
    • pp.117-123
    • /
    • 2002
  • The five main green tea catechin components such as (+)-catechin, (-)-epicatechin, (-)-epigallocatechin, (-)-epicatechin gallate, and (-)-epigallocatechin gallate were analyzed quantitatively from commercial green tea by HPLC. Amounts of catechins decreased in the following order : (+)-catechin > (-)-epigallocatechin gallate >(-)-epigallocatechin >(-)-epicatechin >(-)-epicatechin gallate. In this study, the stability of the following green tea catechins to pH in the range from 3 to 11 was studied using of ultraviolet spectroscopy : (+)-catechin, (-)-epicatechin, (-)-epicatechin gallate, and (-)-epigallocatechin gallate. This study demonstrated that green tea catechins were not stable at high pH and that the pH-, and time-dependent spectral alternatives were not reversible In conclusion, low pH is important to maintain the efficient utilization of green tea catechins.

Analysis Method of Ice Load and Ship Structural Response due to Collision of Ice Bergy Bit and Level Ice (유빙 및 평탄빙의 충돌에 의한 빙하중과 선체구조응답 해석기법)

  • Nho, In Sik;Lee, Jae-Man;Oh, Young-Taek;Kim, Sung-Chan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.85-91
    • /
    • 2016
  • The most important factor in the structural design of ships and offshore structures operating in arctic region is ice load, which results from ice-structure interaction during the ice collision process. The mechanical properties of ice related to strength and failure, however, show very complicated aspect varying with temperature, volume fraction of brine, grain size, strain rate and etc. So it is nearly impossible to establish a perfect material model of ice satisfying all the mechanical characteristics completely. Therefore, in general, ice collision analysis was carried out by relatively simple material models considering only specific aspects of mechanical characteristics of ice and it would be the most significant cause of inevitable errors in the analysis. Especially, it is well-known that the most distinctive mechanical property of ice is high dependency on strain rate. Ice shows brittle attribute in higher strain rate while it becomes ductile in lower strain rate range. In this study, the simulation method of ice collision to ship hull using the nonlinear dynamic FE analysis was dealt with. To consider the strain rate effects of ice during ice-structural interaction, strain rate dependent constitutive model in which yield stress and hardening behaviors vary with strain rate was adopted. To reduce the huge amount of computing time, the modeling range of ice and ship structure were restricted to the confined region of interest. Under the various scenario of ice-ship hull collision, the structural behavior of hull panels and failure modes of ice were examined by nonlinear FE analysis technique.

Thermal Stability of Glass Powder and Rubber-Filled Phenolic Resins and Dynamic Mechanical Properties of Glass Braid/Phenolic Composites (유리분말 및 고무 충진 페놀수지의 열안정성 및 Glass Braid/페놀수지 복합재료의 동역학적 열특성)

  • Yoon, Sung Bong;Cho, Donghwan;Lee, Geon-Woong
    • Journal of Adhesion and Interface
    • /
    • v.8 no.4
    • /
    • pp.14-22
    • /
    • 2007
  • In the present study, the effect of milled glass powder and liquid-type nitrile rubber (NBR) on the thermal stability of phenolic resin and the dynamic mechanical properties of glass braid/phenolic composites has been investigated by means of thermogravimetric analysis and dynamical mechanical analysis. It was found that both milled glass power and NBR filled in the waterborne phenolic resin significantly influenced the thermal stability of phenolic resins and the storage modulus and tan delta of the composites. The presence of glass powder increased the thermal stability of the phenolic resin, whereas the presence of NBR resulted in the weight loss in the specific temperature range. The thermal stability of the phenolic resins without and with the fillers was dependent not only on the cure temperature but also on the cure time. The variation of the storage modulus and tan ${\delta}$ of strip-type glass braid/phenolic composites was also influenced with the introduction of glass powder and NBR to the phenolic matrix as well as by the cure conditions given.

  • PDF

Ethanol changes atpB gene expression and proton permeability in Streptococcus mutans (에탄올이 Streptococcus mutans의 atpB 유전자 발현 및 양성자 투과성에 미치는 영향)

  • Cho, Chul Min;Park, Yong Jin;Lee, Sae A;Kim, Jin Bom;Kang, Jung Sook
    • Journal of Korean Academy of Oral Health
    • /
    • v.42 no.4
    • /
    • pp.224-228
    • /
    • 2018
  • Objectives: As a first step to study the anticaries effect of ethanol alone, we investigated the effects of ethanol on the expression levels of the atpB gene and proton permeability of Streptococcus mutans in suspension cultures. Methods: S. mutans UA159 was grown in brain heart infusion medium at either pH 4.8 or 6.8. The total extracted RNA was reverse-transcribed into cDNA using a $Superscript^{TM}$ First-Strand Synthesis System. The resulting cDNA and negative controls were amplified by ABI PRISM 7700 real-time PCR system with SYBR Green PCR Master Mix. For proton flux assay, bacterial suspensions were titrated to pH 4.6 with 0.5 M HCl, and then additional 0.5 M HCl was added to decrease the pH values by approximately 0.4 units. The subsequent increase in pH was monitored using a glass electrode. Ten percent (v/v) butanol was added to the suspensions at 80 min to disrupt the cell membrane. Results: In a concentration-dependent manner, ethanol alone not only decreased the growth rate of S. mutans and the expression of the atpB gene but also increased the proton permeability at both pH 4.8 and 6.8. Conclusions: These findings suggest that ethanol has the potential for an anticaries ingredient. We believe that ethanol may be used together with fluoride and/or other cariostatic agents in order to develop better anticaries toothpastes and/or mouthrinses.

Effect of Various Agents on Oral Bacterial Phagocytosis in THP-1 Cells

  • Song, Yuri;Lee, Hyun Ah;Na, Hee Sam;Jin, Chung
    • International Journal of Oral Biology
    • /
    • v.43 no.4
    • /
    • pp.217-222
    • /
    • 2018
  • Phagocytosis is a fundamental process in which phagocytes capture and ingest foreign particles including pathogenic bacteria. Several oral pathogens have anti-phagocytic strategies, which allow them to escape from and survive in phagocytes. Impaired bacteria phagocytosis increases inflammation and contributes to inflammatory diseases. The purpose of this study is to investigate the influences of various agents on oral pathogenic phagocytosis. To determine phagocytosis, Streptococcus mutans, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis were stained with 5-(and-6)-carboxyfluorescein diacetate succinimidyl ester (CFSE), and was measured using flowcytometery and confocal microscopy. The influencing factors on phagocytosis were evaluated through the pretreatment of ROS inhibitor (N-acetyl-L-cysteine (NAC)), lysozyme, potassium chloride (KCI) and adenosine triphosphate (ATP) in THP-1 cells. Expression of pro-inflammatory cytokines was determined by enzyme-linked immunosorbent assay (ELISA). The phagocytosis of various bacteria increased in a MOI-dependent manner. Among the tested bacteria, phagocytosis of P. gingivalis showed the highest fluorescent intensity at same infection time. Among the tested inhibitors, the NAC treatment significantly inhibited phagocytosis in all tested bacteria. In addition, NAC treatment indicated a similar pattern under the confocal microscopy. Moreover, NAC treatment significantly increased the bacteria-induced secretion of $IL-1{\beta}$ among the tested inhibitors. Taken together, we conclude that the phagocytosis occurs differently depending on each bacterium. Down-regulation by ROS production inhibited phagocytosis and lead increased of oral pathogens-associated inflammation.

Thermo-mechanical vibration analysis of curved imperfect nano-beams based on nonlocal strain gradient theory

  • Ebrahimi, Farzad;Daman, Mohsen;Mahesh, Vinyas
    • Advances in nano research
    • /
    • v.7 no.4
    • /
    • pp.249-263
    • /
    • 2019
  • In the current paper, an exact solution method is carried out for analyzing the thermo-mechanical vibration of curved FG nano-beams subjected to uniform thermal environmental conditions, by considering porosity distribution via nonlocal strain gradient beam theory for the first time. Nonlocal strain gradient elasticity theory is adopted to consider the size effects in which the stress for not only the nonlocal stress field but also the strain gradients stress field is considered. It is perceived that during manufacturing of functionally graded materials (FGMs) porosities and micro-voids can be occurred inside the material. Material properties of curved porous FG nanobeam are assumed to be temperature-dependent and are supposed to vary through the thickness direction of beam which modeled via modified power-law rule. Since variation of pores along the thickness direction influences the mechanical and physical properties, porosity play a key role in the mechanical response of curved FG nano-structures. The governing equations and related boundary condition of curved porous FG nanobeam under temperature field are derived via the energy method based on Timoshenko beam theory. An analytical Navier solution procedure is utilized to achieve the natural frequencies of porous FG curved nanobeam supposed to thermal loading. The results for simpler states are confirmed with known data in the literature. The effects of various parameters such as nonlocality parameter, porosity volume fractions, thermal effect, gradient index, opening angle and aspect ratio on the natural frequency of curved FG porous nanobeam are successfully discussed. It is concluded that these parameters play key roles on the dynamic behavior of porous FG curved nanobeam. Presented numerical results can serve as benchmarks for future analyses of curve FG nanobeam with porosity phases.