• Title/Summary/Keyword: time-dependent effect

Search Result 2,013, Processing Time 0.036 seconds

Effects of Garlic Oil on Pancreatic Cancer Cells

  • Lan, X.Y.;Sun, H.Y.;Liu, J.J.;Lin, Y.;Zhu, Z.Y.;Han, X.;Sun, X.;Li, X.R.;Zhang, H.C.;Tang, Z.Y.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5905-5910
    • /
    • 2013
  • Background: To investigate the preventive and therapeutic potential of garlic oil on human pancreatic carcinoma cells. Methods: The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay was performed to study the effects of garlic oil on three human pancreatic cancer cell lines, AsPC-1, Mia PaCa-2 and PANC-1. Cell cycle progression and apoptosis were detected by flow cytometry (FCM), staining with PI and annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI), respectively. Morphologic changes of pancreatic cancer cells were observed under transmission electron microscopy (TEM) after treatment with garlic oil at low inhibitory concentrations ($2.5{\mu}M$ and $10{\mu}M$) for 24 hours. Results: Proliferation of the AsPC-1, PANC-1, and Mia PaCa-2 cells was obviously inhibited in the first 24 hours with the MTT assay. The inhibition effect was more significant after 48 hours. When cells were exposed to garlic oil at higher concentrations, an early change of the apoptotic tendency was detected by FCM and TEM. Conclusion: Garlic oil could inhibit the proliferation of AsPC-1, PANC-1, and Mia PaCa-2 cells in this study. Moreover, due to programmed cell death, cell cycle arrest, or both, pro-apoptosis effects on AsPC-1 cells were induced by garlic oil in a dose and time dependent manner in vitro.

Identification of p54nrb and the 14-3-3 Protein HS1 as TNF-α-Inducible Genes Related to Cell Cycle Control and Apoptosis in Human Arterial Endothelial Cells

  • Stier, Sebastian;Totzke, Gudrun;Grunewald, Elisabeth;Neuhaus, Thomas;Fronhoffs, Stefan;Schoneborn, Silke;Vetter, Hans;Ko, Yon
    • BMB Reports
    • /
    • v.38 no.4
    • /
    • pp.447-456
    • /
    • 2005
  • TNF-$\alpha$ plays a pivotal role in inflammation processes which are mainly regulated by endothelial cells. While TNF-$\alpha$ induces apoptosis of several cell types like tumor cells, endothelial cells are resistant to TNFa mediated cell death. The cytotoxic effects of TNF-$\alpha$ on most cells are only evident if RNA or protein synthesis is inhibited, suggesting that de novo RNA or protein synthesis protect cells from TNF-$\alpha$ cytotoxicity, presumably by NF-${\kappa}B$ mediated induction of protective genes. However, the cytoprotective genes involved in NF-${\kappa}B$ dependent endothelial cell survival have not been sufficiently identified. In the present study, the suppression subtractive hybridization (SSH) method was employed to identify rarely transcribed TNF-$\alpha$ inducible genes in human arterial endothelial cells related to cell survival and cell cycle. The TNF-$\alpha$-induced expression of the RNA binding protein $p54^{nrb}$ and the 14-3-3 protein HS1 as shown here for the first time may contribute to the TNF-$\alpha$ mediated cell protection of endothelial cells. These genes have been shown to play pivotal roles in cell survival and cell cycle control in different experimental settings. The concerted expression of these genes together with other genes related to cell protection and cell cycle like DnaJ, $p21^{cip1}$ and the ubiquitin activating enzyme E1 demonstrates the identification of new genes in the context of TNF-$\alpha$ induced gene expression patterns mediating the prosurvival effect of TNF-$\alpha$ in endothelial cells.

Apoptosis Induction, Cell Cycle Arrest and in Vitro Anticancer Activity of Gonothalamin in a Cancer Cell Lines

  • Alabsi, Aied M.;Ali, Rola;Ali, Abdul Manaf;Al-Dubai, Sami Abdo Radman;Harun, Hazlan;Kasim, Noor H. Abu;Alsalahi, Abdulsamad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.5131-5136
    • /
    • 2012
  • Cancer is one of the major health problems worldwide and its current treatments have a number of undesired adverse side effects. Natural compounds may reduce these. Currently, a few plant products are being used to treat cancer. In this study, goniothalamin, a natural occurring styryl-lactone extracted from Goniothalamus macrophyllus, was investigated for cytotoxic properties against cervical cancer (HeLa), breast carcinoma (MCF-7) and colon cancer (HT29) cells as well as normal mouse fibroblast (3T3) using MTT assay. Fluorescence microscopy showed that GTN is able to induce apoptosis in HeLa cells in a time dependent manner. Flow cytometry further revealed HeLa cells treated with GTN to be arrested in the S phase. Phosphatidyl serine properties present during apoptosis enable early detection of the apoptosis in the cells. Using annexin V/PI double staining it could be shown that GTN induces early apoptosis on HeLa cells after 24, 48 and 72 h. It could be concluded that goniothalamin showing a promising cytotoxicity effect against several cancer cell lines including cervical cancer cells (HeLa) with apoptosis as the mode of cell death induced on HeLa cells by Goniothalamin was.

Effect of NUCKS-1 Overexpression on Cytokine Profiling in Obese Women with Breast Cancer

  • Soliman, Nema Ali;Zineldeen, Doaa Hussein;El-Khadrawy, Osama Helmy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.837-845
    • /
    • 2014
  • Background: Overweight and obesity are recognized as major drivers of cancers including breast cancer. Several cytokines, including interleukin-6 (IL-6), IL-10 and lipocalin 2 (LCN2), as well as dysregulated cell cycle proteins are implicated in breast carcinogenesis. The nuclear, casein kinase and cyclin-dependent kinase substrate-1 (NUCKS-1), is a nuclear DNA-binding protein that has been implicated in several human cancers, including breast cancer. Objectives: The present study was conducted to evaluate NUCKS-1 mRNA expression in breast tissue from obese patients with and without breast cancer and lean controls. NUCKS-1 expression was correlated to cytokine profiles as prognostic and monitoring tools for breast cancer, providing a molecular basis for a causal link between obesity and risk. Materials and Methods: This study included 39 females with breast cancer (G III) that was furtherly subdivided into two subgroups according to cancer grading (G IIIa and G IIIb) and 10 control obese females (G II) in addition to 10 age-matched healthy lean controls (G I). NUCKS-1 expression was studied in breast tissue biopsies by means of real-time PCR (RT-PCR). Serum cytokine profiles were determined by immunoassay. Lipid profiles and glycemic status as well as anthropometric measures were also recorded for all participants. Results: IL-6, IL-12 and LCN2 were significantly higher in control obese and breast cancer group than their relevant lean controls (p<0.05), while NUCKS-1 mRNA expression was significantly higher in the breast cancer group compared to the other groups (p<0.05). Significant higher levels of IL-6, IL-12, and LCN2 as well as NUCKS-1 mRNA levels were reported in G IIIb than G IIIa, and positively correlated with obesity markers in all obese patients. Conclusions: Evaluation of cytokine levels as well as related gene expression may provide a new tool for understanding interactions for three axes of carcinogenesis, innate immunity, inflammation and cell cycling, and hope for new strategies of management.

Anti-inflammatory effect of methanol extract from Erigeron Canadensis L. may be involved with upregulation of heme oxygenase-1 expression and suppression of $NF{\kappa}B$ and MAPKs activation in macrophages

  • Sung, Jeehye;Sung, Misun;Kim, Younghwa;Ham, Hyeonmi;Jeong, Heon-Sang;Lee, Junsoo
    • Nutrition Research and Practice
    • /
    • v.8 no.4
    • /
    • pp.352-359
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: In this study, we determined the anti-inflammatory activities and the underlying molecular mechanisms of the methanol extract from Erigeron Canadensis L. (ECM) in LPS-stimulated RAW264.7 macrophage cells. MATERIALS/METHODS: The potential anti-inflammatory properties of ECM were investigated by using RAW264.7 macrophages. We used western blot assays and real time quantitative polymerase chain reaction to detect protein and mRNA expression, respectively. Luciferase assays were performed to determine the transactivity of transcription factors. RESULTS: ECM significantly inhibited inducible nitric oxide synthase (iNOS)-derived NO and cyclooxygenase-2 (COX-2) derived PGE2 production in LPS-stimulated RAW264.7 macrophages. These inhibitory effects of ECM were accompanied by decreases in LPS-induced nuclear translocations and transactivities of $NF{\kappa}B$. Moreover, phosphorylation of mitogen-activated protein kinase (MAPKs) including extracellular signal-related kinase (ERK1/2), p38, and c-jun N-terminal kinase (JNK) was significantly suppressed by ECM in LPS-stimulated RAW264.7 macrophages. Further studies demonstrated that ECM by itself induced heme oxygenase-1 (HO-1) protein expression at the protein levels in dose-dependent manner. However, zinc protoporphyrin (ZnPP), a selective HO-1 inhibitor, abolished the ECM-induced suppression of NO production. CONCLUSIONS: These results suggested that ECM-induced HO-1 expression was partly responsible for the resulting anti-inflammatory effects. These findings suggest that ECM exerts anti-inflammatory actions and help to elucidate the mechanisms underlying the potential therapeutic values of Erigeron Canadensis L.

Role of Retinoic Acid in Spontaneous Apoptosis of Human Neutrophils

  • Yang, Eun-Ju;Lee, Ji-Sook;Kim, Dong-Hee;Min, Bok-Kee;Hyun, Sung-Hee;Kim, In-Sik
    • Biomedical Science Letters
    • /
    • v.13 no.4
    • /
    • pp.279-285
    • /
    • 2007
  • Although retinoic acid has been known as either anti-inflammatory or pro-inflammatory molecule, depending on the cell type, its exact role in mature human neutrophils has not been fully explored. In this study, we investigate the effects of retinoic acid on neutrophil apoptosis and the associated mechanism and found that 9-cis retinoic acid (9CRA) significantly inhibits the spontaneous apoptosis of neutrophils. Its effect is increased by co-treatment with $TNF-\alpha$ (P<0.05). The 9CRA-induced inhibition is blocked by the following enzyme inhibitors: Ly 294002, phosphoinoside (PI)-3 kinase inhibitor, U73122, a phospholipase C (PLC) inhibitor, PP2, Src family protein inhibitor, SB202190, p38 MAPK inhibitor, and BAY-11-7085, NF-kB inhibitor. This study also demonstrates that all-trans retinoic acid suppresses spontaneous apoptosis, similar to the mechanism of inhibition exhibited by 9CRA. Phosphorylation of p38 MAPK decreases by 9CRA treatment. $Ik-B{\alpha}$ is degraded until 30 minutes after a time-dependent 9CRA treatment, but degradation can be inhibited by Ly 294002. These results indicate that 9CRA decreases p38 MAPK activation, induces NF-kB activation via PI-3 kinase, and also blocks cleavage of caspase 3. As these findings suggest, 9CRA has a molecular mechanism which may help pro-inflammatory response by blocking neutrophil apoptosis.

  • PDF

Increased expression of interleukin-1β in triglyceride-induced macrophage cell death is mediated by p38 MAP kinase

  • Sung, Ho-Joong;Son, Sin-Jee;Yang, Seung-Ju;Rhee, Ki-Jong;Kim, Yoon-Suk
    • BMB Reports
    • /
    • v.45 no.7
    • /
    • pp.414-418
    • /
    • 2012
  • Triglycerides (TG) are implicated in the development of atherosclerosis through formation of foam cells and induction of macrophage cell death. In this study, we report that addition of exogenous TG induced cell death in phorbol 12-myristate 13-acetate-differentiated THP-1 human macrophages. TG treatment induced a dramatic decrease in interleukin-$1{\beta}$ (IL-$1{\beta}$) mRNA expression in a dose- and time-dependent manner. The expression of granulocyte macrophage colony-stimulating factor and platelet endothelial cell adhesion molecule remained unchanged. To identify signaling pathways involved in TG-induced downregulation of IL-$1{\beta}$, we added p38 MAPK, protein kinase C (PKC) or c-Raf1 specific inhibitors. We found that inhibition of p38 MAPK alleviated the TG-induced downregulation of IL-$1{\beta}$, whereas inhibition of PKC and c-Raf1 had no effect. This is the first report showing decreased IL-$1{\beta}$ expression during TG-induced cell death in a human macrophage line. Our results suggest that downregulation of IL-$1{\beta}$ expression by TG-treated macrophages may play a role during atherogenesis.

Effects of polysaccharides derived from Orostachys japonicus on induction of cell cycle arrest and apoptotic cell death in human colon cancer cells

  • Ryu, Deok-Seon;Baek, Geum-Ok;Kim, Eun-Young;Kim, Ki-Hoon;Lee, Dong-Seok
    • BMB Reports
    • /
    • v.43 no.11
    • /
    • pp.750-755
    • /
    • 2010
  • Crude Orostachys japonicus polysaccharide extract (OJP) was prepared by hot steam extraction. Polysaccharides (OJPI) were separated from OJP by gel filtration chromatography and phenol-sulfuric acid assay. The average molecular weight of the OJPI was 30-50 kDa. The anti-proliferative effect of OJPI on HT-29 human colon cancer cells was investigated via morphology study, cell viability assay, apoptosis assay, cell cycle analysis, and cDNA microarray. OJPI inhibited proliferation and growth of HT29 cells and also stimulated apoptosis in a dose- and time-dependent manner. In cell cycle analysis, treatment with OJPI resulted in a marked increase of cells in the G0 (sub G1) and G2/M phases. To screen for genes involved in the induction of cell cycle arrest and apoptosis, the gene expression profiles of HT-29 cells treated with OJPI were examined by cDNA microarray, revealing that a number of genes were up- or down-regulated by OJPI. Whereas several genes involved in anti-apoptosis, cell proliferation and growth, and cell cycle regulation were down-regulated, expression levels of several genes involved in apoptosis, tumor suppression, and other signal transduction events were up-regulated. These results suggest that OJPI inhibits the growth of HT-29 human colon cancer cells by various apoptosis-aiding activities as well as apoptosis itself. Therefore, OJPI deserve further development as an effective agent exhibiting anticancer activity.

Adenovirus vector-mediated FAM176A overexpression induces cell death in human H1299 non-small cell lung cancer cells

  • Xie, Hong;Hu, Jia;Pan, Huan;Lou, Yaxin;Lv, Ping;Chen, Yingyu
    • BMB Reports
    • /
    • v.47 no.2
    • /
    • pp.104-109
    • /
    • 2014
  • FAM176A (family with sequence similarity 176 member A) is a novel molecule related to programmed cell death. A decreased expression of FAM176A has been found in several types of human tumors in including lung cancers. In the present study, we investigated the biological activities of FAM176A on the human non-small cell lung cancer cell line H1299 cells. We constructed a recombinant adenovirus 5-FAM176A vector (Ad5-FAM176A) and evaluated the expression and anti-tumor activities in vitro. Cell viability analysis revealed that the adenovirus-mediated increase of FAM176A inhibited the growth of the tumor cells in a dose- and time-dependent manner. This inhibitory effect was mediated by both autophagy and apoptosis that involved caspase activation. In addition, cell cycle analysis suggested that Ad5-FAM176A could induce cell cycle arrest at the G2/M phase, all of which suggested that adenovirus-mediated FAM176A gene transfer might present a new therapeutic approach for lung cancer treatment.

Curcumin ameliorates TNF-α-induced ICAM-1 expression and subsequent THP-1 adhesiveness via the induction of heme oxygenase-1 in the HaCaT cells

  • Youn, Gi Soo;Kwon, Dong-Joo;Ju, Sung Mi;Choi, Soo Young;Park, Jinseu
    • BMB Reports
    • /
    • v.46 no.8
    • /
    • pp.410-415
    • /
    • 2013
  • Adhesion molecules such as ICAM-1 are important in the infiltration of leukocytes into the site of inflammation. In this study, we investigated the inhibitory effects of curcumin on ICAM-1 expression and monocyte adhesiveness as well as its underlying action mechanism in the TNF-${\alpha}$-stimulated keratinocytes. Curcumin induced expression of heme oxygenase-1 (HO-1) in the human keratinocyte cell line HaCaT. In addition, curcumin induced Nrf2 activation in dose- and time-dependent manners in the HaCaT cells. Curcumin suppressed TNF-${\alpha}$-induced ICAM-1 expression and subsequent monocyte adhesion, which were reversed by the addition of tin protoporphyrin IX (SnPP), a specific inhibitor of HO-1, or HO-1 knockdown using siRNA. Furthermore, Nrf2 knockdown using siRNA reversed the inhibitory effect of curcumin on the TNF-${\alpha}$-induced ICAM-1 expression and adhesion of monocytes to keratinocytes. These results suggest that curcumin may exert its anti-inflammatory activity by suppressing the TNF-${\alpha}$-induced ICAM-1 expression and subsequent monocyte adhesion via expression of HO-1 in the keratinocytes.