DOI QR코드

DOI QR Code

Increased expression of interleukin-1β in triglyceride-induced macrophage cell death is mediated by p38 MAP kinase

  • Sung, Ho-Joong (Department of Biomedical Laboratory Science, College of Health Science, Eulji University) ;
  • Son, Sin-Jee (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University) ;
  • Yang, Seung-Ju (Department of Biomedical Laboratory Science, Konyang University) ;
  • Rhee, Ki-Jong (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University) ;
  • Kim, Yoon-Suk (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University)
  • Received : 2012.04.25
  • Accepted : 2012.05.09
  • Published : 2012.07.31

Abstract

Triglycerides (TG) are implicated in the development of atherosclerosis through formation of foam cells and induction of macrophage cell death. In this study, we report that addition of exogenous TG induced cell death in phorbol 12-myristate 13-acetate-differentiated THP-1 human macrophages. TG treatment induced a dramatic decrease in interleukin-$1{\beta}$ (IL-$1{\beta}$) mRNA expression in a dose- and time-dependent manner. The expression of granulocyte macrophage colony-stimulating factor and platelet endothelial cell adhesion molecule remained unchanged. To identify signaling pathways involved in TG-induced downregulation of IL-$1{\beta}$, we added p38 MAPK, protein kinase C (PKC) or c-Raf1 specific inhibitors. We found that inhibition of p38 MAPK alleviated the TG-induced downregulation of IL-$1{\beta}$, whereas inhibition of PKC and c-Raf1 had no effect. This is the first report showing decreased IL-$1{\beta}$ expression during TG-induced cell death in a human macrophage line. Our results suggest that downregulation of IL-$1{\beta}$ expression by TG-treated macrophages may play a role during atherogenesis.

Keywords

References

  1. Park, J. G. and Oh, G. T. (2011) The role of peroxidases in the pathogenesis of atherosclerosis. BMB Rep. 44, 497-505. https://doi.org/10.5483/BMBRep.2011.44.8.497
  2. Ross, R. (1999) Atherosclerosis--an inflammatory disease. N. Engl. J. Med. 340, 115-126. https://doi.org/10.1056/NEJM199901143400207
  3. Vorchheimer, D. A. and Fuster, V. (2001) Inflammatory markers in coronary artery disease: let prevention douse the flames. JAMA 286, 2154-2156. https://doi.org/10.1001/jama.286.17.2154
  4. Elgharib, N., Chi, D. S., Younis, W., Wehbe, S. and Krishnaswamy, G. (2003) C-reactive protein as a novel biomarker. Reactant can flag atherosclerosis and help predict cardiac events. Postgrad. Med. 114, 39-44. https://doi.org/10.3810/pgm.2003.12.1547
  5. Smith, J. D., Trogan, E., Ginsberg, M., Grigaux, C., Tian, J. and Miyata, M. (1995) Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc. Natl. Acad. Sci. U.S.A. 92, 8264-8268. https://doi.org/10.1073/pnas.92.18.8264
  6. Boring, L., Gosling, J., Cleary, M. and Charo, I. F. (1998) Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394, 894-897. https://doi.org/10.1038/29788
  7. Sofer, O., Fainaru, M., Schafer, Z. and Goldman, R. (1992) Regulation of lipoprotein lipase secretion in murine macrophages during foam cell formation in vitro. Effect of triglyceride- rich lipoproteins. Arterioscler. Thromb. 12, 1458-1466. https://doi.org/10.1161/01.ATV.12.12.1458
  8. Rosenblat, M., Coleman, R., Reddy, S. T. and Aviram, M. (2009) Paraoxonase 2 attenuates macrophage triglyceride accumulation via inhibition of diacylglycerol acyltransferase 1. J. Lipid. Res. 50, 870-879. https://doi.org/10.1194/jlr.M800550-JLR200
  9. Aronis, A., Madar, Z. and Tirosh, O. (2005) Mechanism underlying oxidative stress-mediated lipotoxicity: exposure of J774.2 macrophages to triacylglycerols facilitates mitochondrial reactive oxygen species production and cellular necrosis. Free Radic. Biol. Med. 38, 1221-1230. https://doi.org/10.1016/j.freeradbiomed.2005.01.015
  10. Aronis, A., Madar, Z. and Tirosh, O. (2008) Lipotoxic effects of triacylglycerols in J774.2 macrophages. Nutrition 24, 167-176. https://doi.org/10.1016/j.nut.2007.10.017
  11. Tabas, I. (2004) Apoptosis and plaque destabilization in atherosclerosis: the role of macrophage apoptosis induced by cholesterol. Cell Death Differ. 11 Suppl 1, S12-16. https://doi.org/10.1038/sj.cdd.4401444
  12. Nhan, T. Q., Liles, W. C. and Schwartz, S. M. (2005) Role of caspases in death and survival of the plaque macrophage. Arterioscler. Thromb. Vasc. Biol. 25, 895-903. https://doi.org/10.1161/01.ATV.0000159519.07181.33
  13. Kockx, M. M. (1998) Apoptosis in the atherosclerotic plaque: quantitative and qualitative aspects. Arterioscler. Thromb. Vasc. Biol. 18, 1519-1522. https://doi.org/10.1161/01.ATV.18.10.1519
  14. Henson, P. M., Bratton, D. L. and Fadok, V. A. (2001) Apoptotic cell removal. Curr. Biol. 11, R795-805. https://doi.org/10.1016/S0960-9822(01)00474-2
  15. Savill, J. and Fadok, V. (2000) Corpse clearance defines the meaning of cell death. Nature 407, 784-788. https://doi.org/10.1038/35037722
  16. Majno, G. and Joris, I. (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am. J. Pathol. 146, 3-15.
  17. Fink, S. L. and Cookson, B. T. (2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect. Immun. 73, 1907-1916. https://doi.org/10.1128/IAI.73.4.1907-1916.2005
  18. Tabas, I. (2005) Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arterioscler. Thromb. Vasc. Biol. 25, 2255-2264. https://doi.org/10.1161/01.ATV.0000184783.04864.9f
  19. Norata, G. D., Pirillo, A., Callegari, E., Hamsten, A., Catapano, A. L. and Eriksson, P. (2003) Gene expression and intracellular pathways involved in endothelial dysfunction induced by VLDL and oxidised VLDL. Cardiovasc. Res. 59, 169-180. https://doi.org/10.1016/S0008-6363(03)00335-3
  20. Tedgui, A. and Mallat, Z. (2006) Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol. Rev. 86, 515-581. https://doi.org/10.1152/physrev.00024.2005
  21. Ait-Oufella, H., Taleb, S., Mallat, Z. and Tedgui, A. (2011) Recent advances on the role of cytokines in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 31, 969-979. https://doi.org/10.1161/ATVBAHA.110.207415
  22. Stoneman, V. E. and Bennett, M. R. (2004) Role of apoptosis in atherosclerosis and its therapeutic implications. Clin. Sci (Lond). 107, 343-354. https://doi.org/10.1042/CS20040086
  23. Verma, G. and Datta, M. (2010) IL-1beta induces ER stress in a JNK dependent manner that determines cell death in human pancreatic epithelial MIA PaCa-2 cells. Apoptosis 15, 864-876. https://doi.org/10.1007/s10495-010-0498-4
  24. Zhu, S. N., Chen, M., Jongstra-Bilen, J. and Cybulsky, M. I. (2009) GM-CSF regulates intimal cell proliferation in nascent atherosclerotic lesions. J. Exp. Med. 206, 2141-2149. https://doi.org/10.1084/jem.20090866
  25. Harry, B. L., Sanders, J. M., Feaver, R. E., Lansey, M., Deem, T. L., Zarbock, A., Bruce, A. C., Pryor, A. W., Gelfand, B. D., Blackman, B. R., Schwartz, M. A. and Ley, K. (2008) Endothelial cell PECAM-1 promotes atherosclerotic lesions in areas of disturbed flow in ApoE-deficient mice. Arterioscler. Thromb. Vasc. Biol. 28, 2003-2008. https://doi.org/10.1161/ATVBAHA.108.164707
  26. Aflaki, E., Radovic, B., Chandak, P. G., Kolb, D., Eisenberg, T., Ring, J., Fertschai, I., Uellen, A., Wolinski, H., Kohlwein, S. D., Zechner, R., Levak-Frank, S., Sattler, W., Graier, W. F., Malli, R., Madeo, F. and Kratky, D. (2011) Triacylglycerol accumulation activates the mitochondrial apoptosis pathway in macrophages. J. Biol. Chem. 286, 7418-7428. https://doi.org/10.1074/jbc.M110.175703
  27. Messmer, U. K., Reed, U. K. and Brune, B. (1996) Bcl-2 protects macrophages from nitric oxide-induced apoptosis. J. Biol. Chem. 271, 20192-20197. https://doi.org/10.1074/jbc.271.33.20192
  28. Kim, H. J., Kim, M. Y., Hwang, J. S., Lee, J. H., Chang, K. C., Kim, J. H., Han, C. W. and Seo, H. G. (2010) PPARdelta inhibits IL-1beta-stimulated proliferation and migration of vascular smooth muscle cells via up-regulation of IL-1Ra. Cell Mol. Life Sci. 67, 2119-2130. https://doi.org/10.1007/s00018-010-0328-4
  29. Stintzing, S., Ocker, M., Hartner, A., Amann, K., Barbera, L. and Neureiter, D. (2009) Differentiation patterning of vascular smooth muscle cells (VSMC) in atherosclerosis. Virchows. Arch. 455, 171-185. https://doi.org/10.1007/s00428-009-0800-4
  30. Clarke, M. C., Talib, S., Figg, N. L. and Bennett, M. R. (2010) Vascular smooth muscle cell apoptosis induces interleukin- 1-directed inflammation: effects of hyperlipidemia- mediated inhibition of phagocytosis. Circ. Res. 106, 363-372. https://doi.org/10.1161/CIRCRESAHA.109.208389
  31. Han, J., Lee, J. D., Bibbs, L. and Ulevitch, R. J. (1994) A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265, 808-811. https://doi.org/10.1126/science.7914033
  32. Krauss, R. S., Housey, G. M., Hsiao, W. L., Johnson, M. K., Rotenberg, S. A., Borner, C. M. and Weinstein, I. B. (1990) The role of protein kinase C in signal transduction and cellular transformation. Prog. Clin. Biol. Res. 340D, 175-182.
  33. Peyssonnaux, C. and Eychene, A. (2001) The Raf/MEK/ ERK pathway: new concepts of activation. Biol. Cell 93, 53-62. https://doi.org/10.1016/S0248-4900(01)01125-X
  34. Son, Y. O., Heo, J. S., Kim, T. G., Jeon, Y. M., Kim, J. G. and Lee, J. C. (2010) Over-expression of JunB inhibits mitochondrial stress and cytotoxicity in human lymphoma cells exposed to chronic oxidative stress. BMB Rep. 43, 57-61. https://doi.org/10.5483/BMBRep.2010.43.1.057

Cited by

  1. Triglyceride (TG) down-regulates expression of MCP-1 and CCR2 in PMA-derived THP-1 macrophages vol.35, pp.1, 2013, https://doi.org/10.1007/s13258-013-0092-6
  2. Role of oxidative stress in infectious diseases. A review vol.58, pp.6, 2013, https://doi.org/10.1007/s12223-013-0239-5