• Title/Summary/Keyword: time to cracking

Search Result 464, Processing Time 0.03 seconds

Preparation of Silica Films by Sol-Gel Process (졸-겔 법을 이용한 실리카 박막의 제조)

  • 이재준;김영웅;조운조;김인태;제해준;박재관
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.893-900
    • /
    • 1999
  • Silica films were prepared on Si single crystal substrates by sol-gel process using TEOS as starting materials. Films were fabricated by a spin coating technique. Sol solutions were prepared by varying the compositions of CH3OH, H2O and DMF with fixed molar ratio of TEOS=1, HCl=0.05(mol). Wetting behavior viscosity of solutions gelation time thickness of films and cracking behavior were investigated with the various solution compositions. Wetting behaviors of solutions depended on the solution compositions mixing method and mixing rate. The optimum composition of sol was TEOS : DMF ; CH3OH: H2O :HCl=1:2:4:4:0.05(mol) and the mixing rate of solution was optimized at 1 ml/min. Viscosity of solutions were controlled by choosing a reaction time(elapsed time after mixing) at a room temperature so that we could get up to 800nm thick film The surface roughness was getting poor when thickness of films was thicker than 500nm. Thickness of coated films were increased with decreasing amount of CH3OH. The best surface roughness was obtained at the content of CH3OH 4 mol. The shortest gelation time was obtained with the content of CH3OH 8 mol. Crack-free filkms were fabricated when sintered at 500$^{\circ}C$ for 1 hr with heating rate of 0.6$^{\circ}C$/min.

  • PDF

Effect of Hydride Reorientation on Delayed Hydride Cracking In Zr-2.5Nb Tubes

  • Yun Yeo Bum;Kim Young Suk;Im Kyung Soo;Cheong Yong Moo;Kim Sung Soo
    • Nuclear Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.529-536
    • /
    • 2003
  • The objective of this study is to investigate the reorientation of hydrides with applied stress intensity factor, the peak temperature and the time when to apply the stress intensity factor in a Zr-2.5Nb pressure tube during its thermal cycle treatment. Cantilever beam (CB) specimens with a notch of 0.5 mm in depth made from the Zr-2.5Nb tube were subjected to electrolytic hydrogen charging to contain 60 ppm H and then to a thermal cycle involving heating to the peak temperature of either 310 or $380^{\circ}C$, holding there for 50 h and then cooling to the test temperature of $250^{\circ}C$. The stress intensity factor of either 6.13 or $18.4\;MPa\sqrt{m}$ was applied at the beginning of the thermal cycle, at the end of the hold at the peak temperatures and after cooling to the test temperature, respectively. The reorientation of hydrides in the Zr-2.5Nb tube was enhanced with the increased peak temperature and applied stress intensity factor. Furthermore, when the CB specimens were subjected to $18.4\;MPa\sqrt{m}$ from the beginning of the thermal cycle, the reoriented hydrides occurred almost all over the Zr-2.5Nb tube, surprisingly suppressing the growth of a DHC crack. In contrast, when the CB specimens were subjected to the stress intensity factor at the test temperature, little reorientation of hydrides was observed except the notch region, leading the Zr-2.5Nb to grow a large DHC crack. Based on the correlation between the reorientation of hydrides and the DHC crack growth, a governing factor for DHC is discussed along with the feasibility of the Kim's DHC model.

Hetero-core Spliced Fiber Optical Sensing System for an Environment Monitoring (구조물 모니터링을 위한 헤테로 코어형 광센싱 시스템)

  • Kim, Young-Bok;Lee, Kwon-Soon;Watanabe, Kazuhiro;Sasaki, Hiroyuki;Choi, Yong-Woon
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.3 s.76
    • /
    • pp.46-51
    • /
    • 2007
  • A multi-purpose environmental monitoring system has been developed as a commercially available standard using the technique of hetero-core spliced fiber optic sensors, for the purposes of monitoring large-scale structures and preserving natural environments. The monitoring system has been tested and evaluated in a possible outdoor condition, in view of the full-scale operation at actual sites to be monitored. Additionally, the developed system in this work conveniently provides us with various options of sensor modules intended for monitoring such physical quantities as displacement, distortion, pressure, binary states, and liquid adhesion. Two channels of optical fiber line were monitored in each channel, three displacement sensor modules were connected in series, in order to examine the performance to a pseudo-cracking experiment in the outdoor situation and to clarify temperature influences an the system, in terms of the coupling of optical connectors and the OTDR stability. The results from the pseudo-cracking experiment agreed with the actual cracks, by means of calculation, based an the detected displacement values and their geometrical arrangement of the used sensor modules. The temperature change, ranging from 10 to $20^{\circ}C$ resulting from the 10-days free running operation, was found to influence the system stability of ${\pm}10{\mu}m$, primarily due to the coupling instability of the used optical connectors. It was found that fusion splicing, rather than the use of connectors, reduced the fluctuation dawn to ${\pm}2{\mu}m$. The specification and performance of various option modules have been demonstrated to show the capability of inspecting various physical quantities by use of the single system, which would be suitable for multi-purpose environmental monitoring.

Finite Element Analysis of Stress and Strain Distribution on Thin Disk Specimen for SCC Initiation Test in High Temperature and Pressure Environment (고온 고압 응력부식균열 개시 시험용 디스크 시편의 응력과 변형에 대한 유한요소 해석)

  • Tae-Young Kim;Sung-Woo Kim;Dong-Jin Kim;Sang-Tae Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.44-54
    • /
    • 2023
  • The rupture disk corrosion test (RDCT) method was recently developed to evaluate stress corrosion cracking (SCC) and was found to have great potential for the real-time detection of SCC initiation in a high temperature and pressure environment, simulating the primary water coolant of pressurized water reactors. However, it is difficult to directly measure the stress applied to a disk specimen, which is an essential factor in SCC initiation. In this work, finite element analysis (FEA) was performed using ABAQUSTM to calculate the stress and deformation of a disk specimen. To determine the best mesh design for a thin disk specimen, hexahedron, hex-dominated, and tetrahedron models were used in FEA. All models revealed similar dome-shaped deformation behavior of the disk specimen. However, there was a considerable difference in stress distribution in the disk specimens. In the hex-dominated model, the applied stress was calculated to be the maximum at the dome center, whereas the stress was calculated to be the maximum at the dome edge in the hexahedron and tetrahedron models. From a comparison of the FEA results with deformation behavior and SCC location on the disk specimen after RDCT, the most proper FE model was found to be the tetrahedron model.

A Study on the Moisture Content and Cracking Behavior of out side Exposed columns According to Drying Methods of Hnaok Buildings (한옥건축물의 건조방법에 따른 외진 노출 기둥의 함수율 및 균열 양상에 관한 연구)

  • Kim, Yun-Sang
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.21 no.1
    • /
    • pp.37-44
    • /
    • 2019
  • Recently, various tourist products using hanok have increased rapidly. In the meantime, there is a steady demand for Hanok architecture. However, there are many negative perceptions about wood deformation and biodeterioration. Wood deformation and biodeterioration are related to moisture content. And the cracks occur in the process of removing water from the wood. Therefore, this study investigates the moisture content and cracks of dried hanok made of wood according to the drying method of wood. Drying methods include natural seasoning and artificial seasoning. There was a difference in moisture removal depending on drying period and method of natural seasoning. Drying time should be about 3 years for natural seasoning, so the moisture content of the wood is stable. In addition, the moisture absorption rate was low even in a humid environment where the voids were removed. However, natural seasoning is time consuming. Artificial seasoning, on the other hand, can quickly remove moisture from the wood and reduce porosity, but it is costly. Cracks that occur during the drying of wood may become problematic in appearance and stability due to wider spacing over time. As a result, the difference in the moisture content of the timber depending on the drying method and drying period of the wood was maintained even after the formation. These gaps appeared to be differences in moisture absorption in a wet environment.

Thermal Stress Evaluation by Elastic-Creep Analysis during Start-up of Boiler Header (보일러 헤더 기동시의 탄성 크리프 해석에 의한 열응력 평가)

  • Shin, Kyu-In;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.17-22
    • /
    • 2009
  • Thermal stress and elastic creeping stress analysis was conducted by finite element method to simulate start-up process of a boiler header of 500MW standard fossil power plant. Start-up temperature and operating pressure history were simplified from the real field data and they were used for the thermal stress analysis. Two kinds of thermal stress analysis were considered. In the first case only temperature increase was considered and in the second case both of temperature and operating pressure histories were considered. In the first analysis peak stress was occurred during the temperature increase from the room temperature. Hence cracking or fracture may occur at the temperature far below the operating maximum temperature. In the results of the second analysis von Mises stress appeared to be higher after the second temperature increase. This is due to internal pressure increase not due to the thermal stress. When the stress components of radial(r), hoop($\theta$) and longitudinal(z) stress were investigated, compression hoop stress was occurred at inner surface of the stub tube when the temperature increased from room temperature to elevated temperature. Then it was changed to tension hoop stress and increased because of the operating pressure. It was expected that frequent start-up and shut-down operations could cause thermal fatigue damage and cracking at the stub tube hole in the header. Elastic-creeping analysis was also carried out to investigate the stress relaxation due to creep and stabilized stress after considerable elapsed time. The results could be used for assessing the creep damage and the residual life of the boiler header during the long-tenn service.

A Study of the Physical Properties of Sungnyemun Tile (숭례문 기와의 물리적 특성 연구)

  • Chung, Kwang-Yong
    • Journal of architectural history
    • /
    • v.20 no.1
    • /
    • pp.23-39
    • /
    • 2011
  • The Sungnyemun roofing tiles were twice disassembled for maintenance work, in 1963 and 1997, and modern tiles were applied in 1997. However, besides differing in visual appearance, the modern tiles had distinctly different physical properties. A study has been carried out on 22 different tiles, including original Sungnyemun tiles, modern tiles applied during maintenance, traditional tiles made by tile-makers, and others, to examine their physical properties, such as bending strength, frost resistance, absorption, whole-rock magnetic susceptibility, chromaticity, differential thermal analysis, and other characteristics. Since the method of making modern tiles involves compressing clay in a vacuum, modern tiles showed relatively greater bending strength and specific gravity, while Sungnyemun tiles and those made by tile-makers, in comparison, demonstrated less bending strength and specific gravity owing to their production method of 'treading,' in which clay is mixed by having someone tread upon it repeatedly. Over time, the absorption rate of the original tile used for Sungyemun gradually decreased from 21% to 14.7%; traditional tiles from tile-makers showed absorption rates of 17%, while the absorption rate of modern tiles was just 1%, which is significantly low. As for frost resistance, Sungnyemun tiles and traditional tiles from tile-makers showed cracking and exfoliation after being subjected to testing 4 or 5 times, while slight cracking was seen on the surface for modern tiles after 1ngy, or 3 times. In other words, no significant difference from influence by frost was found. According to the results of differential thermal analysis, the plastic temperature was shown to have been no less than 1, $on^{\circ}C$ for all types of tile, and cristobalite was measuredthrough XRD analysis from a Sungnyemun female tile applied during maintenance in 1963, which appeared to have been plasticized at between $1,200^{\circ}C{\sim}1,300^{\circ}C$. Based on these research results on the physical properties of tiles from the Sungnyemun roof, a fundamental production method for tiles to be applied in the restoration of Sungnyemun has been identified.

Evaluation of structural safety reduction due to water penetration into a major structural crack in a large concrete project

  • Zhang, Xiangyang;Bayat, Vahid;Koopialipoor, Mohammadreza;Armaghani, Danial Jahed;Yong, Weixun;Zhou, Jian
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.319-329
    • /
    • 2020
  • Structural damage to an arch dam is often of major concern and must be evaluated for probable rehabilitation to ensure safe, regular, normal operation. This evaluation is crucial to prevent any catastrophic or failure consequences for the life time of the dam. If specific major damage such as a large crack occurs to the dam body, the assessments will be necessary to determine the current level of safety and predict the resistance of the structure to various future loading such as earthquakes, etc. This study investigates the behavior of an arch dam cracked due to water pressure. Safety factors (SFs), of shear and compressive tractions were calculated at the surfaces of the contraction joints and the cracks. The results indicated that for cracking with an extension depth of half the thickness of the dam body, for both cases of penetration and non-penetration of water load into the cracks, SFs only slightly reduces. However, in case of increasing the depth of crack extension into the entire thickness of the dam body, the friction angle of the cracked surface is crucial; however, if it reduces, the normal loading SFs of stresses and joints tractions reduce significantly.

In-situ Raman Spectroscopic Study of Nickel-base Alloys in Nuclear Power Plants and Its Implications to SCC

  • Kim, Ji Hyun;Bahn, Chi Bum;Hwang, Il Soon
    • Corrosion Science and Technology
    • /
    • v.3 no.5
    • /
    • pp.198-208
    • /
    • 2004
  • Although there has been no general agreement on the mechanism of primary water stress corrosion cracking (PWSCC) as one of major degradation modes of Ni-base alloys in pressurized water reactors (PWR's), common postulation derived from previous studies is that the damage to the alloy substrate can be related to mass transport characteristics and/or repair properties of overlaid oxide film. Recently, it was shown that the oxide film structure and PWSCC initiation time as well as crack growth rate were systematically varied as a function of dissolved hydrogen concentration in high temperature water, supporting the postulation. In order to understand how the oxide film composition can vary with water chemistry, this study was conducted to characterize oxide films on Alloy 600 by an in-situ Raman spectroscopy. Based on both experimental and thermodynamic prediction results, Ni/NiO thermodynamic equilibrium condition was defined as a function of electrochemical potential and temperature. The results agree well with Attanasio et al.'s data by contact electrical resistance measurements. The anomalously high PWSCC growth rate consistently observed in the vicinity of Ni/NiO equilibrium is then attributed to weak thermodynamic stability of NiO. Redox-induced phase transition between Ni metal and NiO may undermine the integrity of NiO and enhance presumably the percolation of oxidizing environment through the oxide film, especially along grain boundaries. The redox-induced grain boundary oxide degradation mechanism has been postulated and will be tested by using the in-situ Raman facility.

A Study on the Stress Corrosion Cracking Propagation Behaviors of high Strength Steel by Means of Emission Test (음향방출시험에 의한 고장력강의 응력부식 균열전파 거동에 관한 연구)

  • Yu, Hyo-Seon;Jeong, Se-Hui
    • Korean Journal of Materials Research
    • /
    • v.3 no.4
    • /
    • pp.361-371
    • /
    • 1993
  • Among the various test methods for stress corrusiun cracking(SCC) susceptibility evaluatiun, the slow stram rate test(SSHT) method is a rapid and effective nwthod to evaluate the SCC susceptibility of metal in relatively short time. But it is very difficult to analyze the microfracture behaviors in SCC process by using the test(SSRT) method only. Up to now, it has been well known that the acoustic emission(AE) test is the effective technique to monitor the microcrack initiation and propagation in material fracture pmcess. Therefore. in this paper, we analyzed the correlation between the see process and the characteristics of AE signal by using the SSHT and the AE test. According to the test results. the AE signals produced from the material microfracture were clearly depended on the test environment. The AE signal characteristics generated during see process in synthetic sea water were comparatively greater than those. in air. In addition, the SCC behaviors could be definitely evaluated by the amplitude parameter of AE signals.

  • PDF