DOI QR코드

DOI QR Code

Finite Element Analysis of Stress and Strain Distribution on Thin Disk Specimen for SCC Initiation Test in High Temperature and Pressure Environment

고온 고압 응력부식균열 개시 시험용 디스크 시편의 응력과 변형에 대한 유한요소 해석

  • Tae-Young Kim (Materials Safety Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Sung-Woo Kim (Materials Safety Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Dong-Jin Kim (Materials Safety Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Sang-Tae Kim (Department of Nuclear Engineering, Hanyang University)
  • 김태영 (한국원자력연구원 재료안전기술개발부) ;
  • 김성우 (한국원자력연구원 재료안전기술개발부) ;
  • 김동진 (한국원자력연구원 재료안전기술개발부) ;
  • 김상태 (한양대학교 원자력공학과)
  • Received : 2022.07.15
  • Accepted : 2022.11.17
  • Published : 2023.03.02

Abstract

The rupture disk corrosion test (RDCT) method was recently developed to evaluate stress corrosion cracking (SCC) and was found to have great potential for the real-time detection of SCC initiation in a high temperature and pressure environment, simulating the primary water coolant of pressurized water reactors. However, it is difficult to directly measure the stress applied to a disk specimen, which is an essential factor in SCC initiation. In this work, finite element analysis (FEA) was performed using ABAQUSTM to calculate the stress and deformation of a disk specimen. To determine the best mesh design for a thin disk specimen, hexahedron, hex-dominated, and tetrahedron models were used in FEA. All models revealed similar dome-shaped deformation behavior of the disk specimen. However, there was a considerable difference in stress distribution in the disk specimens. In the hex-dominated model, the applied stress was calculated to be the maximum at the dome center, whereas the stress was calculated to be the maximum at the dome edge in the hexahedron and tetrahedron models. From a comparison of the FEA results with deformation behavior and SCC location on the disk specimen after RDCT, the most proper FE model was found to be the tetrahedron model.

Keywords

Acknowledgement

본 연구는 한국연구재단을 통해 과기부 연구개발사업(2021M2E4A1037979, RS-2022-00143718)의 지원을 받아 수행되었다.

References

  1. D. Feron, J.M. Olive (Eds.), Corrosion issues in light water reactors - stress corrosion cracking, Woodhead Publishing Ltd., New York (2007).
  2. Y. S. Kim, H. S. Kim, Y. H. Kwon, S. W. Kim, H. P. Kim, H. Y. Chang, Relationship between the initiation and propagation of SCC and the electrochemical noise of Alloy 600 for the steam generator tubing of nuclear power plants, Corrosion Science and Technology, 9, 57 (2010). https://www.j-cst.org/opensource/pdfjs/web/pdf_viewer.htm?code=C00090200057
  3. Y. J. Lee, S. W. Kim, H. P. Kim, S. S. Hwang, Study on localized corrosion cracking of Alloy 600 using ENDCPD technique, Corrosion Science and Technology, 12, 93 (2013). Doi: https://doi.org/10.14773/cst.2013.12.2.093
  4. S. S. Hwang, M. J. Choi, S. W. Kim, D. J. Kim, Review of factors affecting IASCC initiation of stainless steels in PWRs, Corrosion Science and Technology, 20, 210 (2021). Doi: https://doi.org/10.14773/cst.2021.20.4.210
  5. ASTM G39-99 (2016). Standard Practice for Preparation and Use of Bent-Beam Stress-Corrosion Test Specimens, ASTM Standards, West Conshohocken, PA (2016).
  6. ASTM G30 (2016). Standard Practice for Making and Using U-Bend Stress-Corrosion Test Specimens. ASTM Book of Standards. ASTM West Conshohocken, PA (2016).
  7. ASTM G-38 (2013). Standard Practice for Making and Using C-Ring Stress-Corrosion Test Specimens. ASTM Standards. West Conshohocken, PA (2013).
  8. Z. Zhai, M. B. Toloczko, M. J. Olszta, S. M. Bruemmer, Stress corrosion crack initiation of alloy 600 in PWR primary water, Corrosion Science, 123, 76 (2017). Doi: https://doi.org/10.1016/j.corsci.2017.04.013
  9. P. J. Meadows, P. L. Andresen, M. B. Toloczko, W.-J. Kuang, S. Ritter, M. Bjurman, L. Zhang, M. Ernestova, A. Toivonen, F. Perosanz-Lopez, J.W. Stairmand, K.J. Mottershead, International round-robin on stress corrosion crack initiation of Alloy 600 material in pressurized water reactor primary water, Corrosion, 76, 719 (2020). Doi: https://doi.org/10.5006/3532
  10. S. W. Kim, G. W. Jeon, D. J. Kim, Proc. Korean Nuclear Society 2021 Spring Meeting, Virtual, Korea (2021).
  11. G. Y. Jeon, S. W. Kim, D. J. Kim, C. Y. Jeong, New Test Method for Real-Time Measurement of SCC Initiation of Thin Disk Specimen in High-Temperature Primary Water Environment, Nuclear Engineering and Technology, 54, 4481 (2022). Doi: https://doi.org/10.1016/j.net.2022.07.025
  12. Y. Garud, Validation of stress corrosion cracking initiation model for stainless steel and nickel alloys: Effects of Cold Work, EPRI, Palo Alto, CA (2012).
  13. M. Smith ABAQUS/Standard User's Manual, Version 6.9. Providence, RI: Dassault Systemes Simulia Corp (2009).
  14. H. Zhu, W. Xu, Z. Luo, H. Zheng, Finite element analysis on the temperature-dependent burst behavior of domed 316l austenitic stainless steel rupture disc, Metals, 10, 1 (2020). Doi: https://doi.org/10.3390/met10020232
  15. J. Y. Jeong, S. B. Lee, W. S. Jo, H. S. Kim, S. H. Baek, Structural Analysis on the Superficial Grooving Stainless-Steel Thin-Plate Rupture Discs: International Journal of Precision Engineering and Manufacturing, 15, 1035 (2014). Doi: https://doi.org/10.1007/s12541-014-0433-7
  16. T. Schneider, Y. Hu, X. Gao, J. Dumas, D. Zorin, D. Panozzo, A Large Scale Comparison of Tetrahedral and Hexahedral Elements for Solving Elliptic PDEs with the Finite Element Method: ACM Transactions on Graphics, 41, 3 (2022). Doi: https://doi.org/10.1145/3508372
  17. I. Simonovski, S. Holmstroem, M. Bruchhausen, Small punch tensile testing of curved specimens: Finite element analysis and experiment, International Journal of Mechanical Science, 120, 204 (2017). Doi: https://doi.org/10.1016/j.ijmecsci.2016.11.029
  18. R.W. Werne, Stress analysis of a rupture disk, UCID16761, University of California (1975).
  19. X. Kong, J. Zhang, X. Li, Z. Jin, H. Zhong, Y. Zhan, F. Han, Experimental and Finite Element Optimization Analysis on Hydroforming Process of Rupture Disc, Procedia Manufacturing, 15, 892 (2018). Doi: https:// doi.org/10.1016/j.promfg.2018.07.408
  20. K. F. Nilsson, D. Baraldi, S. Holmstr?m, I. Simonovski, A Numerical and Experimental Assessment of the Small Punch Creep Test for 316L(N) Stainless Steels, Metals, 11, 1609 (2021). Doi: https://doi.org/10.3390/met11101609
  21. V. Brown, Finite Element Modelling of the Small Punch Test for Structure Critical Design, PhD Thesis, University of Sheffield (2020).
  22. J. Petruska, J. Hulka, K. Hulka, Computational Simulation of Small Punch Test: In Applied Mechanics and Materials, Trans Tech Publications, 232, 497 (2012). Doi:https://doi.org/10.4028/www.scientific.net/AMM.232.497_