• 제목/요약/키워드: time series forecast

검색결과 371건 처리시간 0.029초

시계열 분석 모형 및 머신 러닝 분석을 이용한 수출 증가율 장기예측 성능 비교 (Comparison of long-term forecasting performance of export growth rate using time series analysis models and machine learning analysis)

  • 남성휘
    • 무역학회지
    • /
    • 제46권6호
    • /
    • pp.191-209
    • /
    • 2021
  • In this paper, various time series analysis models and machine learning models are presented for long-term prediction of export growth rate, and the prediction performance is compared and reviewed by RMSE and MAE. Export growth rate is one of the major economic indicators to evaluate the economic status. And It is also used to predict economic forecast. The export growth rate may have a negative (-) value as well as a positive (+) value. Therefore, Instead of using the ReLU function, which is often used for time series prediction of deep learning models, the PReLU function, which can have a negative (-) value as an output value, was used as the activation function of deep learning models. The time series prediction performance of each model for three types of data was compared and reviewed. The forecast data of long-term prediction of export growth rate was deduced by three forecast methods such as a fixed forecast method, a recursive forecast method and a rolling forecast method. As a result of the forecast, the traditional time series analysis model, ARDL, showed excellent performance, but as the time period of learning data increases, the performance of machine learning models including LSTM was relatively improved.

Chaotic Forecast of Time-Series Data Using Inverse Wavelet Transform

  • Matsumoto, Yoshiyuki;Yabuuchi, Yoshiyuki;Watada, Junzo
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.338-341
    • /
    • 2003
  • Recently, the chaotic method is employed to forecast a near future of uncertain phenomena. This method makes it possible by restructuring an attractor of given time-series data in multi-dimensional space through Takens' embedding theory. However, many economical time-series data are not sufficiently chaotic. In other words, it is hard to forecast the future trend of such economical data on the basis of chaotic theory. In this paper, time-series data are divided into wave components using wavelet transform. It is shown that some divided components of time-series data show much more chaotic in the sense of correlation dimension than the original time-series data. The highly chaotic nature of the divided component enables us to precisely forecast the value or the movement of the time-series data in near future. The up and down movement of TOPICS value is shown so highly predicted by this method as 70%.

  • PDF

R에서 자동화 예측 함수에 대한 성능 비교 (Performance comparison for automatic forecasting functions in R)

  • 오지우;성병찬
    • 응용통계연구
    • /
    • 제35권5호
    • /
    • pp.645-655
    • /
    • 2022
  • 본 논문에서는 R에서 시계열 자료 예측을 위한 자동화 함수에 대하여 고찰하고 그 예측 성능을 비교합니다. 대표적인 시계열 예측 방법인 지수 평활 모형과 ARIMA (autoregressive integrated moving average) 모형을 대상으로 하였으며, 이들의 모형화 및 예측 자동화를 가능하게 하는 R의 4가지 자동화 함수인 forecast::ets(), forecast::auto.arima(), smooth::es()와 smooth::auto.ssarima()를 대상으로 하였습니다. 이들의 예측 성능을 비교하기 위하여 3,003가지의 시계열로 구성되어 있는 M3-Competition자료와 3가지의 정확성 척도를 사용하였습니다. 4가지 자동화 함수는 모형화의 다양성 및 편리성, 예측 정확도 및 실행 시간 등에서 각자 장단점이 있음을 확인하였습니다.

Chaotic Predictability for Time Series Forecasts of Maximum Electrical Power using the Lyapunov Exponent

  • Park, Jae-Hyeon;Kim, Young-Il;Choo, Yeon-Gyu
    • Journal of information and communication convergence engineering
    • /
    • 제9권4호
    • /
    • pp.369-374
    • /
    • 2011
  • Generally the neural network and the Fuzzy compensative algorithms are applied to forecast the time series for power demand with the characteristics of a nonlinear dynamic system, but, relatively, they have a few prediction errors. They also make long term forecasts difficult because of sensitivity to the initial conditions. In this paper, we evaluate the chaotic characteristic of electrical power demand with qualitative and quantitative analysis methods and perform a forecast simulation of electrical power demand in regular sequence, attractor reconstruction and a time series forecast for multi dimension using Lyapunov Exponent (L.E.) quantitatively. We compare simulated results with previous methods and verify that the present method is more practical and effective than the previous methods. We also obtain the hourly predictability of time series for power demand using the L.E. and evaluate its accuracy.

Lyapunov 지수를 이용한 전력 수요 시계열 예측 (Time Series Forecast of Maximum Electrical Power using Lyapunov Exponent)

  • 박재현;김영일;추연규
    • 한국정보통신학회논문지
    • /
    • 제13권8호
    • /
    • pp.1647-1652
    • /
    • 2009
  • 비선형 동력학 시스템으로 구성된 전력 수요의 시계열 데이터를 예측하기 위해 적용된 신경망 및 퍼지 적응 알고리즘 등은 예측오차가 상대적으로 크게 나타났다. 이는 전력수요 시계열 데이터가 가지고 있는 카오스적인 성질에 기인하며 이중 초기값에 민감한 의존성은 장기적인 예측을 더욱더 어렵게 하는 요인으로 작용한다. 전력수요 시계열 데이터가 가지고 있는 카오스적인 성질을 정량 및 정성적인 방식으로 분석 을 수행하고, 시스템 동력학적 특성의 정량분석에 이용되는 Lyapunov 지수를 이용하여 어트랙터 재구성, 다차원 카오스 시계열 데이터를 예측하는 방식으로 수요예측 시뮬레이션을 수행하고 결과를 비교 평가하여 기존 제안방식보다 실용적이며 효과적임을 확인한다.

Lyapunov 지수를 이용한 전력 수요 시계열 예측 (Time Series Forecast of Maximum Electrical Power using Lyapunov Exponent)

  • 추연규;박재현;김영일
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 춘계학술대회
    • /
    • pp.171-174
    • /
    • 2009
  • 비선형 동력학 시스템으로 구성된 전력 수요의 시계열 데이터를 예측하기 위해 적용된 신경망 및 퍼지 적응 알고리즘 등은 예측오차가 상대적으로 크게 나타났다. 이는 전력수요 시계열 데이터가 가지고 있는 카오스적인 성질에 기인하며 이중 초기값에 민감한 의존성은 장기적인 예측을 더욱더 어렵게 하는 요인으로 작용한다. 전력수요 시계열 데이터가 가지고 있는 카오스적인 성질을 정량 및 정성적인 방식으로 분석을 수행하고, 시스템 동력학적 특성의 정량분석에 이용되는 Lyapunov 지수를 이용하여 어트랙터 재구성, 다차원 카오스 시계열 데이터를 예측하는 방식으로 수요예측 시뮬레이션을 수행하고 결과를 비교 평가하여 기존 제안방식보다 실용적이며 효과적임을 확인한다.

  • PDF

예측지원시스템에 의한 직관적 예측의 행태에 관한 연구 (Interactive Judgemental Adjustment of Initial Forecasts with forecasting Support Systems)

  • Lim, Joa-Sang;Park, Hung-Kook
    • 한국경영과학회지
    • /
    • 제24권1호
    • /
    • pp.79-98
    • /
    • 1999
  • There have been a number of empirical studios on the effectiveness of Judgmental adjustment to statistical forecasts Generally the results have been mixed. This study examined the impact of the reliability and the source of the additionally presented reference forecast upon the revision process in a longitudinal time series forecasting task with forecast support systems. A 2-between(reliability & source). 2-within(seasonality & block) factorial experiment was conducted with post-graduate students using real time series. Judgmental adjustment was found to improve the accuracy of initial eyeballing irrespective of the reliability of an additionally presented forecast. But it did not outperform the dampened reference forecast. No effect was found of the way the source of the reference forecast was framed. Overall the subjects anchored heavily on their Initial forecast and relied too little on the reference forecast irrespective of its reliability. Moreover they did not improve at the task over time, despite immediate outcome feedback.

  • PDF

시계열에서의 연속이상치가 예측에 미치는 영향 (The effect of patchy outliers in time series forecasting)

  • 이재준;편영숙
    • 응용통계연구
    • /
    • 제9권1호
    • /
    • pp.125-137
    • /
    • 1996
  • 시계열 자료는 흔히 반복되지 않는 비정상적인 사건의 영향으로 이상치를 포함한다. 시계열 자료는 관측치들 사이에 종속구조를 갖기 때문에, 이상치의 영향은 다른 통계적 분석에서 보다 더 심각할 수 있다. 본 논문에서는 연속이상치가 예측에 미치는 영향을 파악하는 데에 촛점을 두었다. 특히, l 시점 후 예측오차의 평균제곱의 증가량을 유도하고, 이 증가량으로 연속이상치가 예측에 미치는 영향을 측정하였다. 일반적으로, 연속이상치가 예측 원점에서 아주 가까운 시점에서 발생하지 않았으며 그 증가량은 크지 않음을 밝히고, 실제 자료를 분석하여 확인하였다.

  • PDF

A Time Series-Based Statistical Approach for Trade Turnover Forecasting and Assessing: Evidence from China and Russia

  • DING, Xiao Wei
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제9권4호
    • /
    • pp.83-92
    • /
    • 2022
  • Due to the uncertainty in the order of the integrated model, the SARIMA-LSTM model, SARIMA-SVR model, LSTM-SARIMA model, and SVR-SARIMA model are constructed respectively to determine the best-combined model for forecasting the China-Russia trade turnover. Meanwhile, the effect of the order of the combined models on the prediction results is analyzed. Using indicators such as MAPE and RMSE, we compare and evaluate the predictive effects of different models. The results show that the SARIMA-LSTM model combines the SARIMA model's short-term forecasting advantage with the LSTM model's long-term forecasting advantage, which has the highest forecast accuracy of all models and can accurately predict the trend of China-Russia trade turnover in the post-epidemic period. Furthermore, the SARIMA - LSTM model has a higher forecast accuracy than the LSTM-ARIMA model. Nevertheless, the SARIMA-SVR model's forecast accuracy is lower than the SVR-SARIMA model's. As a result, the combined models' order has no bearing on the predicting outcomes for the China-Russia trade turnover time series.

The Performance of Time Series Models to Forecast Short-Term Electricity Demand

  • Park, W.G.;Kim, S.
    • Communications for Statistical Applications and Methods
    • /
    • 제19권6호
    • /
    • pp.869-876
    • /
    • 2012
  • In this paper, we applied seasonal time series models such as ARIMA, FARIMA, AR-GARCH and Holt-Winters in consideration of seasonality to forecast short-term electricity demand data. The results for performance evaluation on the time series models show that seasonal FARIMA and seasonal Holt-Winters models perform adequately under the criterion of Mean Absolute Percentage Error(MAPE).