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Chaotic Forecast of Time-Series Data Using Inverse Wavelet Transform
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Abstract: Recently, the chaotic method is
employed to forecast a near future of uncertain
phenomena. This method makes it possible by
restructuring an attractor of given time-series data
in multi-dimensional space through Takens'
embedding theory. However, many economical
time-series data are not sufficiently chaotic. In
other words, it is hard to forecast the future trend
of such economical data on the basis of chaotic
theory. In this paper, time-series data are divided
into wave components using wavelet transform. It
is shown that some divided components of
time-series data show much more chaotic in the
sense of correlation dimension than the original
time-series data, The highly chaotic nature of the
divided component enables us to precisely forecast
the value or the movement of the time-series data
in near future. The up and down movement of
TOPICS value is shown so highly predicted by
this method as 70%.

Keywords: Chaos theory, Short-term forecasting,
Wavelet transform.

1 Introduction

The chaotic short-term forecasting method!'*
based on time-series data enables us to know a
value, which we could not predict before.
Nevertheless, it is still difficult to definitely
forecast a value even in near future because many
kinds of data are less chaotic. Even though such
data are less chaotic, it is possible to abstract and
pull out the partial chaotic portion out of the
datalPTB].

In this research, wavelet transform'® is
employed to take chaotic portions out of the
original time-series d and we can find the more
highly chaotic component out of the original data
by measuring these correlated dimension. Once we
can successfully find the highly chaotic portion out
of the original data, it enables us to improve the
forecasting  precision by  the  wavelet
transformation.

The correlation dimension!® of the divided
components should be measured smaller than the
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one of the original data, if the divided components
are more highly chaotic than the original data.

2. Chaotic Approach and Forecasting

Forecasting can base on the Takens' embedding
theory 1”7 which tells us that it is possible to
restructure the trajectory of a dynamic system in a
high dimensional space by using only the
information (that is, time-series data) of partial
component dimensions (variables).

Using time-series data x(#), let us define vector
Z(1) as follows:

20) =) At =) xlt =22, s e ~(n=1)z)) (1)

where 7 denotes an arbitrary constant time
interval. The vector Z() shows one point in »n
dimensional space (Data Space). Therefore,
changing ¢ generates a trajectory in the n
dimensional data space. When » is sufficiently
large, this trajectory shows a smoothly changed
one of the high dimensional dynamic system. That
is, if the dynamic system has some attractor, the
attractor obtained from the original one should
come out on the data space. In other words, the
original attractor of the dynamic system can be
embedded in the #» dimensional topological space.
Number » is named an embedded dimension.
Denoting the dimension of the original dynamic
system by m, it can be proved that this dimension
n is sufficiently large if » holds the following:

n=2m+1 2)

Equation (2) is a sufficient condition on the
embedded dimension. It is required to employ data
with more than 3m+1 to 4m+[ samples within a
certain time length in short-term forecasting.

Next, let us illustrate the deterministic structure
using a restructured trajectory. There are several
methods. Let us embed discrete time-series data
with equal time interval 7=1/5 in embedded
dimension »n=3. Observed discrete time-series
samples can be mapped into a topological space
with embedded 3-dimensional space As a result,
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the mapped vector is denoted in the following:

Z(e)= (x(t), x(r - 7), x( - 27)) 3)

Let Z(i) denote a 3-dimensional vector of that
maps observed data including the most recent time
into a topological space.

These data in the neighborhood of Z(i) are ones
observed in the past.

The trajectory of Z(i+/) at one step future has
been observed.

These relations enable us to forecast behavior
Z(i+1) in near future.

The future trajectory x(i+/) of the given
time-series data (x(i), x(i-1), ...) can be calculated..

3. Correlation Dimension

The measurement of correlation dimension is
employed to evaluate whether the time-series data
are chaotic or not. The evaluation of the
correlation dimension is pursued by checking
whether the time-series data distribute in the less
dimensional space than m-dimensional space, if
the data is embedded in m-dimensional space.

At first, let us embed the time-series data into m
dimensional space. Then, the procedure is written
as follows:

(1) The procedure:

STEP1: draw the circle with radius » at the
center of the points which each embedded vector
has.

STEP2: count how many points are included
within the drawn circle and measure its number C.

When the radius is large, then the large number
of points should be included in the circle with
radius r. As C is an increasing function of r, let us
denote it as C(r). If plotted points are distributed
evenly in the m-dimensional space, the number of
points included within the circle should increase
proportionally to the area of the circle, as radius »
increases.

C(r)= ar™ @

On the other hand, if the structure has any
regularity, C(r) should increase proportionally to
the less value than m powered value.

C(r) = prlm) (5)

The value (m-x) is named correlation dimension.
In the case of random data, the regularity could not
be found in the space even if the embedded
dimension is increased. Therefore, the correlation
dimension should increase even if the embedded

dimension does. When the time-series data have
the deterministic structure in the embedded space,
the correlation dimension can not increase and
should be matured at a certain value, even if the
embedded dimension increases.

4. Wavelet Transformation

Fast Fourier Transform is a widely employed
method to transform signal into the portions of
each frequencies. A sin function is employed as a
base function. The sin function is an infinitive
smooth function.  Therefore, the information
obtained by the Fast Fourier Transform does not
include the local information such as the place

and the frequency where and which frequency
the original signals have.

On the other hand the wavelet transform
employs a compact portion of a wavelet as a base
function. Therefore, it is a time and frequency
analysis such as it enables us to determine the
signal using time and frequency.

The mother wavelet transform yfx) of a
function f{x) can be defined as follows:

vef No.a)= [ ﬁll’(x;b)/(x)dx ©

Where a is a scale of the wavelet, b is a translate.

V/ixi is a conjugate of a complex number. It is

also possible to recover the original signal f{x)
using wavelet transform. That is, we can realize
the inverse wavelet transform as follows:

= [l ol

(M

The wavelet transform is a useful method to
know the characteristics of the signal but not an
efficient one. It is because the signal has a
minimum unit and the wavelet method expresses
many-duplicated information’s. This point can be
resolved by discrediting a dimensional axis. Let us
denote a dimension as (b,1/a)=(27k,2), then the
discrete wavelet transform can be rewritten as

d =2’ ,[; w(27 x — k)f (x)dx (8

Inverse wavelet transform is

S~ Y Ydi w2 x k) )
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Let us denote the summation

Zd,fj)l//(Zj x- k) of the right term as
L

gj(x)=Zd,fj)y/(21x—k) (10)
k

Then let us define f; (x) as

fx)=g,,(x)+ g, (x)+ (1

where an integer j is named a level. If we can
denote f(x) as fy(x), then

filx)=g (x)+ g (x)+- (12)

This equation illustrates that the function fy(x) is
transformed into wavelet components g_;(x), g.2(%),
..., . It is required that the left side should be
transformed uniquely into the right side and also
the left side should be realized by composition
from the right side components. They can be
realized by using a mother wavelet ¥ as a base

function.
Function f;(x) can be rewritten using a recursive
forms

fix)= g, ()+ £,.(x) (13)

This equation means that the original signal fi(x)
can be transformed into wavelet components
giu(x) and f,(x). This equation enables us to
decompose the original into the wavelet
components step by step. This method is named
multi-resolution signal decomposition.

5. Moving Wavelet Transform

When time-series data are analyzed on the basis
of wavelet transform, the number of employable
samples should decrease such as 1/2 of the
number of the original samples for j=-1 and 1/4
for j=-2, respectively. Accordingly the time
interval should be expanded to the 2 times and 4
times wider, respectively. This is because wavelet
transform produce lower frequency components
according that j becomes smaller. This situation
makes it difficult to inverse-transform the
forecasted components of wavelet transform into
the original time-series value.

This paper proposes a method to move the
starting and terminated points and wavelet
transform them so as to obtain the same focal
future time-point. This wavelet transform is

named a moving wavelet transform in this paper.
This method enables us to inverse-wavelet
transform forecasted component values for each j
at next future time-point into the original
time-series...
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Fig. 1 Moving Wavelet Transform

For example, let us wavelet transform original
time-series data until j=-3 as in Figure. 1.. In this
case, the number of employable samples for j=-1
should be 1/2 of the total number of samples and
one for j=-2 is 1/4 and one for j=-3 is 1/8. If we
move the starting point one by one, we can
interpolate the lacked samples or components
which should be inverse-wavelet-transforms and
calculate the inversed forecasted value.

6 . Forecast Based on Inverse-Wavelet-
Transform

This section will be spent to explain the
short-term forecast based on inverse-wavelet-
transform.

The wavelet transform decomposes time- series
data into each frequency band. Decomposed
time-series data is more convenient to forecast the
short-term future comparing the original
time-series data. Therefore, it is much reasonable
to forecast the short-term future using
components decomposed by wavelet transform
and to inverse-wavelet-transform these forecasted
components values into the original time-series
value which means the short-time forecasted
value of the original time-series data. This method
enables us to forecast the short-term future based
on wavelet transform with more precision than on
the original time-series data.

Basically, the chaotic forecast is to evaluate
value in the one term future from the present.
Nevertheless, the decomposing by wavelet
transform divides the original data into each of
frequency bunds. This bring out that the length,

t, of one term for each component should be
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different. Therefore, it 1is impossible to
inverse-wavelet-transform the forecasted
component values into the original value. We
should employ moving wavelet transform to bring
the forecasted component values at one term
future and using these forecasted component
values at the one term future can be
inverse-wavelet-transformed into the original
time-series.
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Fig. 2 Forecast based on
Inverse-Wavelet-Transform
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