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Chaotic Predictability for Time Series Forecasts of
Maximum Electrical Power using the Lyapunov
Exponent

Jae-Hyeon Park, Young-Il Kim, and Yeon-Gyu Choo, Member, KIMICS

Abstract— Generally the neural network and the Fuzzy
compensative algorithms are applied to forecast the time
series for power demand with the characteristics of a non-
linear dynamic system, but, relatively, they have a few
prediction errors. They also make long term forecasts
difficult because of sensitivity to the initial conditions.

In this paper, we evaluate the chaotic characteristic of
electrical power demand with qualitative and quantitative
analysis methods and perform a forecast simulation of
electrical power demand in regular sequence, attractor
reconstruction and a time series forecast for multi dimension
using Lyapunov Exponent (L.E.) quantitatively. We compare
simulated results with previous methods and verify that the
present method is more practical and effective than the
previous methods. We also obtain the hourly predictability
of time series for power demand using the L.E. and evaluate
its accuracy.

Index Terms— Chaos, Lyapunov Exponent, Electrical
Power, Forecast

L. INTRODUCTION

WITH the development of the industrial society and
the improvement of life style, demand and supply of
electric power have gradually become more recognized
and emphasized. It is possible to supply stable electric
power with an accurate forecast of power demand,
which is closely related with energy saving and
environment preservation. The prediction of the supply
of electric power is related with the characteristics of
production and the consumption of electric power
occurring  simultaneously. It requires accurate
management for electric power to be supplied
continuously and stably. Because of the various factors
mentioned above, the short-term prediction of the
supply of electric power is closely related to the
management plan of the power facility, which
considers consumers’ demand which changes at any
time[1][2]. To analyze the peculiarity of power supply,
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various methods have been used such as time series,
regression, neural network analysis and so on. We
verified that a time series of power demand has a
nonlinear characteristic so its prediction is impossible
using chaotic analysis[3].

In this paper, we analyze, with quantitative and
qualitative analysis methods, the power demand of a
residential district, Gyeongnam Jinju City, which has a
chaotic characteristic. We perform a multi dimensional
short-term forecast simulation using the L.E. obtained
from the analysis of a time series. We compare the
simulated results with previous results and evaluate its
performance by their error. Finally we estimate a
predictable duration and verify the relationship between
the prediction error and the duration.

II. THE CHAOTIC SIGNAL ANALYSIS

A. Analysis methods of chaotic signals

Linearity means that the rule that determines what a
part of a system is going to do next is not influenced by
what it is doing now. Chaos is considered as a case of
nonlinearity, because it is influenced by what is yet to
happen and it is an unsystematic phenomenon. Due to
sensitivity, all phenomena in a chaotic system depend on
the initial conditions, so that any uncertainty in the initial
state of the given system, no matter how small, will lead
to rapidly growing errors in any effort to predict future
behavior[4][5]. The frequency spectrum of a chaotic
system essentially resembles one of continuous random
noise. The dynamic orbits are observed as chaotic
behavior in the entire phase space.

There are three analysis methods to analyze the
chaotic behavior of a given system; the first method is
to compare attractors described in a phase space for a
time series and noise signal. The second method is the
qualitative analysis method using a frequency spectrum
such as an autocorrelation function, power spectrum.
The last method is the quantitative analysis method
using the correlation dimension, L.E.[6]

B. Attractor reconstruction and Lyapunov Exponent

L.E. is a useful tool to analyze the chaotic attractor
quantitatively and is also suitable for measuring the
sensitivity of a chaotic trajectory to the initial state.
L.E. indicates logarithmically the growth or shrinkage
rate of small perturbations in various directions in a
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phase space. If the L.E. obtained from a time series is
positive, the given system has chaotic characteristic
behavior, which means its attractor is sensitive to its
initial conditions and becomes chaotic. On the other
hand, if the L.E. is negative, the attractor gradually
shrinks or becomes extinct. Generally the largest L.E.
(L.L.E.) is produced from a time series of a nonlinear
system after the attractor has been reconstructed by
various embedding dimensions.

In order to study various dynamic systems with a
time series of multi-dimension dynamic system or
ascertain whether strange attractor including noise
signals exist using a mathematical solution, Takens
proposed the theory and mathematical basis related
reconstructed attractor[7]. For example, we may obtain
the value of one of the state variables of the system.
We consider the sequence of numbers from a time
series shown the next equation, which one of variables,
calling it Z(t), and a time interval 7

zy =2(0), z, = 2(7), z, = 2(27), --- (1)

We create a time series data set shown as equation (2)
after selecting a parameter of time delay T

(2(0),2(T), z(2T))
(2(7),2(z +T), z(r +2T)) 2

(z(kT), z(kT+T), z(kt +2T))

We can obtain various strange attractors if the points
of this data set are plotted in three dimensional space
with connecting line segments. However, we may
simply work in higher-dimensional spaces using
vectors as shown in equation (3).

u(t) =(z(t), z(t+T), - ,z(t+2NT)) 3)

If N is chosen large enough, the attractor will fit in
the chosen space. Here the choice of the time lag T
is almost arbitrary or selected by auto-correlation
function.

Wolf et al. give an algorithm for obtaining L.L.E.
from a time series[8]. The approach is based on
following the divergence of a neighboring trajectory
from a selected one. Over a time interval t,-1,, the

rate of divergence of two points that evolve from a
spacing p; to a spacing p may be characterized as
shown in equation (4). After n repetitions of stretching
and renormalizing the spacing, the rates are weighted
by the fraction of time between each renormalization
and then added to yield an experimental value for
L.L.E. shown as equation (5).
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HI. SHORT-TERM PREDICTION USING L.E.

The proposed prediction algorithm proceeds according
to the following steps: the first is to reconstruct the time
domain vectors of a time series in an embedding phase
space. The second is to calculate an unknown point in a
phase space using chaotic behavior. The third is to recover
the prediction point of a phase space to the time domain
and obtain the predicted value[9].

A data set of a time series is given as equation (6),
where N is the length of data set.

x(l)7 x(2)a )C(3), o ,X(N) (6)

A known embedding point in D-dimension phase space
is written using the time delay 7 shown as equation (7).

Y{), Ie[1[N-(D-DT]] @)

N-(D-1)T embedding points of that space can be
obtained using equation (7). The nearest point to the
Y(N-(D-1)T) point can also be found due to those
points. The distance between Y(N-(D-1)T) and
Y(min_dist) can be calculated and we call it Diffy. The
instant distance Diffl between Y(N-(D-1)T+1) and
Y(min dist+1) also can be calculated using L.E. if
Diffi/Diffp has a little change in every step shown as
equation (8).

Diff, =Diff, -2** ®

Where 4 is the L.E. and K is the number of steps
from Diff, to Diff;. A point of Y(N-(D-1)T+1) can be
calculated because a point of Y(min_dist+1) is known.
The length of prediction is based on chaotic behavior
and L.E. as shown in the following section.

IV. PREDICABILITY OF A CHAOTIC SIGNAL

When a given system, such as a time series of power
demand, has a positive L.E., there is a time horizon
beyond which prediction breaks down[10]. Suppose we
measure the initial conditions of a given system very
accurately. We consider some error | g | between an

estimated value and the true initial state. After a time t,
the discrepancy grows as in equation (9).
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Let a be a measure of its tolerance; we consider it
acceptable if a prediction is within a of the true state. The
prediction becomes intolerable when || §()|2q. A time

horizon can be described by the following equation.

1

thorizon z; lnm (10)
No matter how hard we work to reduce the initial error,

we cannot predict longer than a few multiples of 1/ .

V. SIMULATIONS

A. Analysis for a time series of power demand in Jinju city

A time series of electric power demand applied in this
paper is based on information gathered from a residential
district of Gyeongsangnamdo Jinju city. It was obtained
hourly from January to December 2004. Figure 1 shows a
part of an electric power time series supplied in Jinju city
on 2004. The attractor of a time series described on a
phase space is shown in figure 2. It is separated from the
periodic signal and the noise signal distributed randomly
within a phase space for checking in detail.

Elactric power supplied in Jinju city on 2004
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Fig. 1. Electric power supplied in Jinju city in 2004.

Trajectory for supplied Electrical Power
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Fig. 2. Trajectory of a time series in phase space.

To analyze the chaotic characteristic of a time series,
the correlation dimension and L.E. quantitative
analysis were used. The correlation dimension is
generally obtained from changing a specific radius of a
phase space and calculating interference values for the
existing trajectory in that area after a time series
composed of one dimensional vectors is reconstructed
by embedding the dimension. Table 1 shows
correlation dimensions obtained from changing an
embedding dimension (E.D.) for a time series from 1 to
6 as described in Table 1 and the correlation integral
(C.1) for ecach embedding dimension is shown in
Figure 3.

L.L.E’s of Table 2 are obtained with a method
proposed by Wolf et al, in which the attractor of a time
series is reconstructed by changing the embedding
dimension from 2 to 6. As shown in Table 2, a time
series of power demand is regarded as a nonlinear
system with chaotic characteristic because the L.E.’s
have positive values.

TABLE I
CORRELATION INTEGRAL BY CHANGING
EMBEDDING DIMENSION.
E.D. 1 2 3 4 5 6

C.I | 09862 | 1.8437 | 1.9655 | 1.5393 | 1.1781 | 0.8771
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Fig. 3. Correlation Integral of a time series.

TABLE II
L.E. FOR EACH E.D. (TIME DELAY: 5)
ED. 2 3 4 5 6
L.E. 0.3278 | 0.1029 | 0.0699 | 0.0311 | 0.0175

B. Shovt-term Forecast of power demand

In order to evaluate the performance of the proposed
method for short-term prediction, we performed a
forecast simulation for power demand with the
previous Fuzzy compensative algorithm (F.C.A.) and
L.L.E. method using a time series of power demand in
Jinju city in 2004.
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The previous prediction model using the Fuzzy
compensative algorithm is proceeding by compensating
the prediction error with the change rate of maximum
electrical power demand due to Fuzzy algorithm and
differences of the active and the predicted results.[11]
A diagram of the previous model is shown as Figure 4
and the proposed model as Figure 5.
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Fig. 4. Block diagram of Fuzzy compensative algorithm.
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Fig. 5. Block diagram of the proposed algorithm.

The simulation to forecast power demand is applied
into a section of the time series; we compute RMSE
(Root Mean Square Error) and MAPE (Mean Absolute
Percent Error) shown as equation (11), (12) in order to
compare the actual and the predicted results.

2

RMSE = an

A
X, — X,

1 n
>

A
xn —xn

MAPE:%Z———XIOO% (12)

i=1 n

where x, is nth chaotic time series point real value,
x, is nth chaotic time series point prediction value.

The results predicted by the previous algorithm and
the proposed one are shown in Figure 6, 7, 8, 9. The
error comparison tables are shown as Table 3, 4, 5, 6,
which are the result of simulating each algorithm for

some specific periods.

The result of prediction simulation shows the
proposed algorithm makes a stable result for all periods
but F.C.A. makes for a part of target periods.

LComparison results of simulation with LLE/FCA.
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Fig. 6. Comparison result of L.L.E. and F.C.A. for random
period (Period:1-1200/Y ear:2004)

TABLE III
ERROR COMPARISON TABLE FOR FIG. 6.
Algorithm RMSE MAPE
F.CA. 11.3365 1.6501
LLE. 9.4396 1.6649
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Fig. 7. Comparison result of L.L.E. and F.C.A. for random
period (Period:2689-3888/Year:2004)

TABLE IV
ERROR COMPARISON TABLE FOR FIG. 7.
Algorithm RMSE MAPE
F.CA. 14.7630 3.0226
LLE. 5.4544 1.0883
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Although the simulation is performed for a part of
the time series, the performance of proposed algorithm
is more effective and excellent than the F.C.A. in a
case of short-term forecasting of time series such as
power demand.

Comparisan results of simulation with LLEF.CA
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Fig. 8. Comparison result of L.L.E. and F.C.A. for random
period (Period:3315-4512/Year:2004)

TABLE V
ERROR COMPARISON TABLE FOR FIG. 8.
Algorithm RMSE MAPE
F.CA. 10.2588 1.9795
LLE. 5.4315 1.0533
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Fig. 9. Comparison result of L.L.E. and F.C.A. for random
period (Period:4681-5880/Y ear:2004)

TABLE VI
ERROR COMPARISON TABLE FOR FIG. 9.
Algorithm RMSE MAPE
EC.A. 32.9480 6.9520
L.LE. 8.1812 1.7817

C. Predictability of Short-term Forecast

As mentioned above, the predictability of the short-
term forecast is closely related with a time horizon
beyond which prediction breaks down. We can estimate
the sensitivity of a given system depending on the initial
state by checking the error rate after the time horizon.
Generally no matter how hard we work to reduce the
initial error, we cannot predict longer than the time
horizon. We evaluate the change of prediction error for
simulated periods from the time horizon to 7 hours
added. As a result of simulation for most of steps in time,
the RMSE goes on increasing. It means it is impossible
to predict beyond the time horizon regardless of the
initial condition. Figure 10 shows the change rate of
prediction error, RMSE, by time horizon and various
periods.

Predictability of the Lyapunov Exponent
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Fig. 10. Change rate of prediction error beyond the time
horizon.

VI. CONCLUSIONS

In this paper, we proposed a prediction algorithm
that involved time domain vectors of a time series
being reconstructed in embedding phase space by
various embedding dimensions, unknown points in a
phase space being calculated using chaotic behavior
and the prediction point of a phase space being
recovered in the time domain.

L.E. is generally applied to analyze the sensitivity of
the dependence on the initial state, which is commonly
found in nonlinear systems exhibiting chaotic behavior.
It is produced by an attractor reconstruction of the
given system. The predictive data is obtained from the
distances of different points in phase space and the L.E.
As a result of the proposed algorithm being simulated
for a restricted area, we can get the following results:

Firstly, the proposed algorithm gives an excellent
performance compared to the previous Fuzzy
compensative algorithm. Secondly, its algorithm is
suitable for short-term forecasting of time series but
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makes more errors as time goes by because of the
sensitivity to the initial state. The time horizon at
which the prediction breaks down can be obtained
using the L.E. Thirdly, the prediction error becomes
smaller and more accurate for higher embedding
dimensions.

To predict chaotic time series with accuracy, some
intelligent algorithm such as Neural Network or Fuzzy

Logic should be combined with the proposed algorithm.

The simulation results of such a combined algorithm
will be compared with the previous and proposed ones
in subsequent papers.
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