• Title/Summary/Keyword: time horizon

Search Result 374, Processing Time 0.036 seconds

A Frozen Time Receding Horizon Control for a Linear Discrete Time-Varying System (선형 이산 시변시스템을 위한 고정시간 이동구간 제어)

  • Oh, Myung-Hwan;Oh, Jun-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.140-144
    • /
    • 2010
  • In the case of a linear time-varying system, it is difficult to apply the conventional stability conditions of RHC (Receding Horizon Control) to real physical systems because of computational complexity comes from time-varying system and backward Riccati equation. Therefore, in this study, a frozen time RHC for a linear discrete time-varying system is proposed. Since the proposed control law is obtained by time-invariant Riccati equation solved by forward iterations at each control time, its stability can be ensured by matrix inequality condition and the stability condition based on horizon for a time-invariant system, and they can be applied to real physical systems effectively in comparison with the conventional RHC.

Some Properties on Receding Horizon $H_{\infty}$ Control for Nonlinear Discrete-time Systems

  • Ahn, Choon-Ki;Han, Soo-Hee;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.460-465
    • /
    • 2004
  • In this paper, we present some properties on receding horizon $H_{\infty}$ control for nonlinear discrete-time systems. First, we propose the nonlinear inequality condition on the terminal cost for nonlinear discrete-time systems. Under this condition, noninceasing monotonicity of the saddle point value of the finite horizon dynamic game is shown to be guaranteed. We show that the derived condition on the terminal cost ensures the closed-loop internal stability. The proposed receding horizon $H_{\infty}$ control guarantees the infinite horizon $H_{\infty}$ norm bound of the closed-loop systems. Also, using this cost monotonicity condition, we can guarantee the asymptotic infinite horizon optimality of the receding horizon value function. With the additional condition, the global result and the input-to-state stable property of the receding horizon value function are also given. Finally, we derive the stability margin for the saddle point value based receding horizon controller. The proposed result has a larger stability region than the existing inverse optimality based results.

  • PDF

Stability of intervalwise receding horizon control for linear tie-varying systems

  • Ki, Ki-Baek;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.430-433
    • /
    • 1997
  • In this paper, an intervalwise receding horizon control (IRHC) is proposed which stabilizes linear continuous and discrete time-varying systems each other by means of a feedback control stemming from a receding horizon concept and a minimum quadratic cost. The results parallel those obtained for continuous [4],[9] and discrete time varying system [5],[15] each other.

  • PDF

A Novel extended Horizon Self-tuning Control Using Incremental Estimator (증분형 추정기를 사용한 새로운 장구간 예측 자기동조 제어)

  • 박정일;최계근
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.6
    • /
    • pp.614-628
    • /
    • 1988
  • In the original incremental Extended Horizon Control, the control inputs are computed recursively each step in the prediction horizon. But in this paper, we propose another incremental Extended Horizon Self-tuning Control version in which control inputs can be computed directly in any time interval. The effectiveness of this algorithm in a variable time delay or load disturbances environment is demonstrated by computer simulation. The controlled plant is a nonminimum phase system.

  • PDF

Game Optimal Receding Horizon Guidance Laws and Its Equivalence to Receding Horizon Guidance Laws

  • Park, Jae-Weon;Kim, Ki-Baek
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.770-775
    • /
    • 2002
  • In this paper, a game optimal receding horizon guidance law (GRHG) is proposed, which does not use information of the time-to-go and target maneuvers. It is shown that by adjusting design parameters appropriately, the proposed GRHG is identical to the existing receding horizon guidance law (RHG), which can intercept the target by keeping the relative vertical separation less than the given value, within which the warhead of the missile is detonated, after the appropriately selected time in the presence of arbitrary target maneuvers and initial relative vertical separation rates between the target and missile. Through a simulation study, the performance of the GRHG is illustrated and compared with that of the existing optimal guidance law (OGL).

Receding Horizon Predictive Control for Nonlinear Time-delay Systems

  • Kwon, Wook-Hyun;Lee, Young-Sam;Han, Soo-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.27.2-27
    • /
    • 2001
  • This paper proposes a receding horizon predictive control (RHPC) for nonlinear time-delay systems. The control law is obtained by minimizing finite horizon cost with a terminal weighting functional. An inequality condition on the terminal weighting functional is presented, under which the closed-loop stability of RHPC is guaranteed, A special class of nonlinear time-delay systems is introduced and a systematic method to find a terminal weighting functional satisfying the proposed inequality condition is given for these systems. Through a simulation example, it is demonstrated that the proposed RHPC has the guaranteed closed-loop stability for nonlinear time-delay systems.

  • PDF

Mixed H2/H infinity FIR Fitters for Discrete-time State Space Models

  • Lee, Young-Sam;Kwon, Wook-Hyun;Han, Soo-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.52.1-52
    • /
    • 2002
  • Young Sam Lee : He is currently a PhD candidate student. His research interest includes time-delay systems, signal processing, and receding horizon control. Wook Hyun Kwon : His research interest includes time-delay systems, signal processing, receding horizon control, and robust control. He is the president of IFAC 2008 which is to be held in Korea. Soo Hee Han : He is currently a PhD candidate student. His research interest includes time-delay systems, signal processing, receding horizon control, and communication.

  • PDF

A Group Maintenance Model with Extended Operating Horizon (연장된 운용기간을 활용하는 그룹보전모형)

  • Yoo, Young-Kwan
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.3
    • /
    • pp.89-95
    • /
    • 2017
  • This paper presents another maintenance policy for a group of units under finite operating horizon. A group of identical units are subject to random failures. Group maintenances are performed to all units together at specified intervals, and the failed units during operation are remained idle until the next group maintenance set-up. Unlike the traditional assumption of infinite operating horizon, we adopt the assumption of the finite operating horizon which reflect the rapid industrial advance and short life cycle of modern times. The units are under operation until the end of the operating horizon. Further, the operation of units are extended to the first group maintenance time after the end of the horizon. The total cost under the proposed maintenance policy is derived. The optimal group maintenance interval and the expected number of group maintenances during the horizon are found. It is shown that the proposed policy is better than the classical group maintenance policy in terms of total cost over the operating horizon. Numerical examples are presented for illustrations.

Receding horizon tracking control as a predicitive control for the continuous-time systems

  • Noh, Seon-Bong;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1055-1059
    • /
    • 1990
  • This paper proposed a predictive tracking controller for the continuous-time systems by using the receding horizon concept in the optimal tracking control. This controller is the continuous-time version of the previous RHTC (Receding Horizon Tracking Control) for the discrete-time state space models. The problems in implementing the feedforward part of this controller is discussed and a approximate method of implementing this controller is presented. This approximate method utilizes the information of the command signals on the receding horizon and has simple constant feedback and feedforward gain. To perform the offset free control, the integral action is included in the continuous time RHTC. By simulation it is shown that the proposed method gives better performance than the conventional steady state tracking control.

  • PDF

Sufficient Condition for Existence of Solution Horizon in Undiscounted Nonhomogeneous Infinite Horizon Optimization Problems

  • Park, Yun-Sun;Cho, Myeon-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.20 no.1
    • /
    • pp.121-131
    • /
    • 1994
  • Since many infinite horizon problems have infinite sequence of data to be considered, in general, it is impossible to express the optimal strategies finitely or to calculate them in finite time. This paper considers undiscounted nonhomogeneous deterministic infinite horizon problems. For those problems, we take a basic step to solve this class of infinite horizon problems optimally by giving a sufficient condition for a finite solution.

  • PDF