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Solution Horizon in Undiscounted
Nonhomogeneous Infinit Horizon

Optimization Problems
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Abstract

Since many infinite horizon problems have infinite sequence of data to be considered,
in general, it is impossibie to express the optimal strategies finitely or to calculate them
in finite time. This paper considers undiscounted nonhemogeneous determinitic infinite
horizon problems. For those problems, we take a basic step to solve this class of infinite
horizon problems optimally by giving a sufficient condition for a finite solution.

1. Introduction

Infinite horizon optimization is concerned
with selecting an infinite sequence of decisions
to optimize an infinite horizon problem over
unbounded time,

Since many infinite herizon problems have
infinite sequences of data to be considered, the
optimal strategies cannot be expressed finitely
not calculated in finite time. The obvious

solution method, though not exact, is to

truncate a sufficiently large but tractable finite
time horizon and solve that finite horizon
problem using techniques like dynamic pro-
gramming or linear programming (see Denardo
[4), Ross [9]). However, the corresponding
finite horizon optimal value may have some
error due to the approximation of the finite
planning horizon. An improved solution pro-
cedure would be to assign a salvage value,
which tepresents the value obtainable from that

time on, at the end of the finite horizon.
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However, again, the salvage value itself cannot
be estimated exactly, Consequently, in general,
it is not possible to have an optimal sequence
of decisions by the finite approximation of an
infinite horizon problem,

However, there are some cases, as in the
homogeneous Markov Decision Processes, in
which an infinite horizon problem can be
solved optimally using 2 finite method due to
the special structure of the problem (see Hajnal
(6], Ross [10][11]). Even when an infinite

horizon problem is not homogeneous, occasion-

ally, we can solve the infinite horizon problem

optimally by 2 finite procedure (Bean and
Smith [3], Alden and Smith [1]). If a current
decision does not affect future desicions, the
current decision can be obtained without
relying on data in the far future. Thus, by
selecting an appropriate finite horizon which
separates the current and furure decisions, we
can obtain and initial optimal decision, This
finite horizon which decouples the current and
future decisions is called a soelufion horizon.
After obtaining the initial decision using the
solution hotizon, the second, third, and other
optimal decisions can be obtained by moving
the horizon one step forward each time.
Consequently, an infinite sequence of optimal
decisions can be retrieved by repeating this
finite procedure.

However, a solution horizon does not always
exist in every nonhomogeneous infinite horizon
problem, The necessary and most important

condition for the existence of a solution

horizon is the optimality of an algorithmically
optimal strategy (see Hopp [7]). An algorithm-
ically optimal strategy is an infinite hotizon
strategy defined to be an accumulation point
strategy of finite horizon optimal strategies in
the proper metric,

The teason that the optimality of an
algorithmically optimal strategy is necessary for
the existence of a solution horizon is the
following. Since an algorithmically optimal
strategy is an accumulation point of finite
horizon optimal strategies, if the algorithmically

optimal strategy is optimal and if it is unique,

there exists a finite horizon beyond which the

first optimal decision of finite horizon problems
agrees with that of an algorithmically optimal
strategy., However, that finite horizon is 2
sclution horizon by definition and the algo-
rithmically optimal strategy is optimal by the
assumption, Thus, by solving that finite hori-
zon (2 solution horizon) problem, we can
obtain the first optimal decision of an infinite
horizon optimization problem. The purpose of
this paper is to find the condition under which
the algorithmically optimal strategy is optimal
for undiscounted deterministic nonhomgeneous
infinite horizon problems,

As discussed, to solve an infinite horizon
optimization problem finitely, we need to show
the existence of a solution horizon, which
requites the optimality of an algorithmically
optimal strategy. For the undiscounted nonho-
mogeneocus Markov Decision Process, Hopp,

Bean, and Sinith [8] proved average optimality
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of an algorithmically optimal strategy when the
Markov chains associated with the problem are
weakly ergodic, For the discounted determinis-
tic problem, which is a subset of infinite
dimensional mathematical programming, Scho-
chetman and Smith [12] showed that if a
sequence of states can eventually be reached
from any feasible state {the reachability condi-
tion), the accumulation point of the finite
horizon optimal strategies up to that sequence
of nodes is discounted optimal. Also, Bean and
Smith [3] proved the samec tresult under a
weaker condition that a sequence of states can
be reached weakly in discounted total cost {or
reward) from an infinite horizon optimal
strategy (they called it the weak reachability
condition ),

For the undiscounted deterministic problem,
we will present a modified reachability condi-
tion to prove average optimality of an
algorithmically optimal strategy. {refer to sec-
tion 3 for the definition of reachability) Then,
we will prove that if the sequence of nodes on
an algotithmically optimal strategy is reachable
from either an infinite horizon average optimal
strategy ot a finite horizon optimal strategy
with uniformly bounded steps, an algorithmical-
ly optimal strategy is average optimal. More-
over, we will also prove that if the sequence
of nodes on the path of an algorithmically
optimal strategy is reachable from finite hori-
zon optimal solution nodes with uniformly
bounded steps, the finite horizon average

optimal value approaches an infinite horizon

optimal value (average optimal value conver-
gence) and the average optimal value function
is continnous at an algotithmically optimal
strategy  point (continuity of the average
optimal value function ).

Section 2 describes the undiscounted deter-
ministic problem and introduces notation and
definitions for this problem, In Section 3 we
present the reachability conditton to show
vatious results including the average optimality
of an algorithmically optimal strategy. Finally,
Section 4 summarizes this paper with the
application to the production and planning

problem,
2, Problem Description and Notation

We consider the general infinite horizon
sequential decision problem as in Bean and
Smith [2] with a countably infinite directed
graph, (N, A) with a single root node together
with a real valued reward function R:A—R.
We refer to (N, A, R) as the decision nerwork,
arcs {7, §) €A as decisions, nodes 1E€EN as
states, and arc rewards R(3, j) as decision
rewards. We will also assume discrete time
decision epochs.

Since there is a unique root node with in-
degree zero, since we assume that each node
has nonzero out-degree, each path can be
feasibly continued to form a path covering the
infinite horizon. A path is an infinite sequence
of states (nodes) (s, sy,** ) where sy is the

root node and (s,, 5,,,) €4 for all =0, 1,
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2, +»+, and S, represents the ser of feasible
states at time % {the beginning of stage #}.
We refer to (s,, S,4p **+ Sy) as a (finite)
path from sy to sy when # ( N. The length
of arc (s,, s,.,) associated with the decision
(Sus Sn41) will also be referred to as a reward
R(s,, $,4.). Sometimes, we will also denote £,
as a state at time {decision epoch) =,

We will define a strategy ¥ = {x;, %1, ***) as
the infinite sequence of decisions {x,},, along
a path {s,},~, where x,=(s,, s,,,) where
2,=1{s,, S,41), and we denote the set of
feasible strategies by XM7Y, | where X is
the set of feasible policies (decisions) at time
#, and x(#, s,) is an element of X(#, s,).
Then, X(x)€X is the set of all n-horizon
feasible strategies, which can be defined as
Uses, X(n, s,). Alos, we can define X
(n, B,) as the set of feasible strategies leading
where B,CS,.

Throughout this paper, superscript, *, on any

to a set of states B,
strategy will represent that the straregy is
optimal among the smallest class of strategies
to which it belongs. For example, X* is the
set of average optimal infinite horizon strateg-
ies,

If a strategy x is used and the one pericd
discount factor is 0{a=<:1, the net present value
at time k{the beginning of stage k) of the
rewards from time £ throught time N, N)Z,
is written V,(x:N). Note that in evaluating
V.(x:N}, the first k policies {decisions) of x
are ignored. In general, we are interested in

the value function from time ( onward, which

is written -
N-1
Volx,N} =2 a"R(x,),
®=0

where R(x,)=R{s,, s,,,)} and x passes along
a path {s,}, =, In an infinite horizon problem
with discount factor &, 0{a(1, define x* to be
an {infinite horizon) e-discounted optimal

strategy if

lim Vﬂ(x‘»'N)_,}iﬂ; Vol N)Y20, for all x€X,

Ny

This definition is valid if the limit exists, It

s possible that Vy(xN) diverges with N

especially when a=1. In that case, we define

%" to be an infinite horizon average optimal

strategy if

Liminf Vy{x*:N) liminf Vol N}
N—+wm N N—co N

20, for all x€X,

We assume that R(x”)EE( oo for all # and

% so that this liminf always exists,

We define the metric, @, between two

feasible strategies x and 2’ as
= ok

Plx x) = 3 270(s, #),
=0

where

lf xk = x’k
otherwise

Let the set of feasible strategies, X, be

compact in the topology introduced by the
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metric 2. Under this topology, a sequence of
strategies, (¥ }yo, with 1" €X for all N,
converges to ¥ €X if and oanly if its compo-
nents, {x} 1y, converge to %, for all k=0, 1,
-+, That is, £ —x in p-metric as N—0 if
and only if, for all & there is an N, such that
2% =x, for N)N,. This metsic says that two
strategies are closer if they agree over more
initial decisions. By this mettic, we wish to put
mote weight on earlier policy agreements since
we need to have only the first few optimal
decisions right now.

Based on the g-metric, we defing an
algotithmically optimal strategy, X, and an
accumulation point of finite horizon optimal
strategies to a given sequence of nodes
{Sxinon % Then, {8yiyc, and {sy}no, are the
corresponding sequences of nodes on paths of
those strategics respectively, Mathematically :

Definition A strategy, %, is an algorithm-
ically optimal strategy if for some subsequences

of integers {N,}, o
x*(N,) —x as m — o in P-metric,

{SN)n<q is the sequence of nodes on the path

of x:
Definition A strategy, x, is an accumula-
tion point strategy of finite hotizon optimal
. + o0
strategies to a given sequence of nodes {Sy}y-o

. . oo
if for some subsequences of integers {N,} _,

(N85 ) —x as m— o in pP-metric.

{;N}NOZD is the sequence of nodes on the path
of x

Note that an algorithmically optimal strategy,
%, is a special case of an accumulation point

strategy, x.
3. Reachability

The main goal of this paper is to find a
condition that is sufficient for the average
optimality of an algorithmically optimal strate-
gy. For discounted infinite dimensional
mathematical programming, Schochetman and
Smith [12] proved that if a sequence of nodes
can be reached from all feasible states, the
accumulation point, %, is discounted optimal.
Motivated by this, in this section, we will adopt
the following reachability condition to show
the average optimality of an algorithmically
optimal strategy for undiscounted deterministic
problems, First, we introduce the definition of
reachability for our undiscounted deterministic

problems,

Definition (Reachability) A given sequence
of states {SN}Nofo, sy~ 0, is reachable from
a sequence of states {tj(N)}an if there exists
N sufficiently large such that for each N = N/

there exists a sequence of decisions (x}, =+, x3)

1. which is feasible for N-herizon problem

and achieves state sy, ie,
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(fl‘lvs Y rﬁx} g X(N, 'SN)!

2. whose first 7{N) decisions are feasible for
a j{N)-horizon problem and achieves
sate Ly, ie.,

(=Y, =, %l € XGN), ),

where §{N) is a function of N such that j{N)
{N.

We will employ the above definition of
reachability to prove the average optimality of
an algorithmically optimal strategy, However,
the reachability condition of Schochetman and
Smith [12] for the discounted problem alone
was not sufficient for the discountéd optimality
of an Talgorithmically optimal strategy. The
existence of an interest rate was also required
for the optimality of an algorithmically optimal
strategy. Thus, in undiscounted deterministic
problems, by the absence of a discount factor,
the reachability condition alone seems to be
insufficient to prove the average optimality of
an algorithmically optimal strategy. Moreover,
our definition of reachability is weaker than
the definition of teachability in Schochetman
and Smith [12]. Ours requires a single node
to be reachable from a node whereas theirs
requires a2 whole sequence of nodes to be
teachable from a node, Thus, we need an
additional assumption of uniform boundedness
to support reachability in the undiscounted

case,

Assumption 1 When N is sufficiently
large, there exists a subsequence {{N)}y2,
such that the sequence of nodes {§;},., is
reachable from the sequence of finite hotizon
optimal solution nodes, {Sj&)}ﬁm and N—j
{(N) is uniformly bounded by a finite number,
B, over all N, where sj[;;} is a node which is
achieved by x*(j(N)) at time j{(N}.

Now, we are ready to state our main

theorem following the lemma below.

Lemma 1 (Continuity) Under Assump-
tion 1, the average optimal value function is

continuous at x. That is, when

2 (Npm) — % as m — oo tn the p-melric,

lim inf Vy(x*(N):N) _ liminf Va{&N)

(Proof}

- By the reachability condition, there exists a
time point N and the corresponding node
§y which can be reached from sj(;v) by a
strategy x’N.

+ By Assumption 1, N—j(N)=<B{ce over all
N.

« since x*(N,,)—Z% in the £-metric as m—>co,

there exists a time point N,, which makes
x;(Nm) =x, for k=1,"-N.

By the principle of optimality, % is an

optimal strategy up to a node Sy. Then,
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]
V(N) 2 W2 GV 4V, (5N) for al But, liminf '/‘](”'(}3;,})}"(””zumian"("(,f”‘N

N,

Dividing the both sides by N,

V(BN)  Volx* GIN) )G (N)) 4 Vg (#5V)
N N

Taking lim nf on both sides,

W), TG +V,a (8N

lim f }\" N’

But, N—j(N) are uniformly bounded by a
finite number, B, over all N and rewards are
uniformly bounded for all N, Thus,

N
J_MIET—)_’ 0 as N—co,

Then,

VU(;r > lina f fE(N) (N

lim inf
Since N =j(N}+(N—j(N)),

f BN 5 o TGN )

lim iof AN+ (V=)

Dividing denominator and numerator of the
righthand side by j(NJ,

Vox* (V) ):5(N})
WEN) T )

lim inf N " NN
J(N)
which is

lim inf

Vl&N) LA (V) )5(N))
N = () '

by the definition of lim inf, Thus,

VN «N):
litm inf (; )_ﬁminfw (1)

The other inequality is obvious since x*(N)
is an optimal strategy for N-horizon problem,
ie,

fim inf for all N,

Volx*(N);N o, VoEN)
N ~ N

Taking liminf on both sides,

Vo ( %,N )

;] A
lim inf w > i inf

From inequalities (1) and (2},

V H;N * -
lim inf Vol&N) = lim infw

N N

The sbove lemma shows the continuity of
the average optimal wvalue function at an
algorithmically optimal strategy, % In the
discounted case, the sufficient condition for this
continuity is the existence of an interest rate,
In the undiscounted Markov Decision Process
case, as in Hajnal [6], weak ergodicity gives
this continuity. Based on this lemma, we can

prove the main goal of our research,

Theorem 1
Under Assumption 1, an algorithmically
optimal strategy, X, is average optimal, i,

lim inf Vo(3:N)
N—+00 N

-, lim inf Volx:N)

Z Nooo N for all x in
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X.

In terms of the lim sup set, under Assump-

tion 1,
lim sup X*N) € X*
N—oo

(Proof)
By the definition of x* and the fact that
ieX,
RGN o VlEN)
lim inf N # lim inf N {3)
Since x*(N) is an optimal solution for N-

horizon problem,

V(" (N):N) < Vals)
N ” N

, for all N
Taking lim inf on the both sides,
lim inf

- . .,

But the previous lemma says that

E ] . ®.
lim inf L NN) {Aj,v)’N ) > i inf V—"("N’N).
Thus,

TalaN)

lim inf > limin N (4)

Vo(2,N)
N

Then, from inequalities {3) and (4},

*,
lim inf P _

. Vo{&N)
N nf —s——.

m1l N

*—Vc{x"'N) = lim inf—-—Vo(x'.N) for

But, lim inf N N

all x in X, Thus,
tim inf Vo(ZN) _ liminf Vy(x:N)

N—oo N — N—oo N
X,

for all ¥ in

The fact that an algorithmically optimal
strategy is average optimal leads us to compute
infinite horizon problems finitely, Moreover,
the next corollary justifies the finite horizon

approximation of infinite horizon problems.

Coroliary 1 {avemge optmal value convergence)
Undet Assumption 1, the finite horizon average
optimal value converges to the infinite horizon

average otpimal value, that is,

Vo( x",‘N}

. V.;(x‘(N);N)z. A
hmlnfiN lim inf ~
(Proof)

From the Lemma 1 and and the Theorem

The above cotollary says that solving suffi-
ciently long finite horizon problem is a
reasonable approximetion for the infinite hori-
zon problem.

Now, we will introduce a different assump-
tion using an accumulation point strategy, ;,
and the corresponding sequence of nodes
{snN oo 10 obtain a more general result than
Theorem 1. However, we will lose the
continuity result in Lemma 1 and the conver-

gence resule in Cotollary 1.
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Assumption 2 When N is sufficiently
latge, there exists a subsequence {f{N)} o,
such that the sequence of nodes {sylyoo is
teachable from the sequence of infinite horizon
optimal solution nodes, {s (N neo and N—j
(N) is uniformly bounded by a finite numbet,
B, over all N, where s}-(;\r) is a node on the
path of an infinite horizon average optimal
strategy, x*

Note that Assumption 1 required that the
sequence of nodes {§yly-, is reachable from

the sequence of finite hotizon optimal solution

nodes, {s}-( M}\f’f o

Theorem 2
Under Assumptdon 2, the accumulation

point, x, is an average optimal strategy, e,

lim inf Vo(xN) - lim inf Vo(x:N)
X

for all x in

(Proof)

By Assumption 2, there eists an infinite
horizon average optimal node Sj(;v} from which
xy can be reached through a strategy x°, and
N—j#(N) is uniformly bounded over all N.
Also, by the principle of optimality, x is the
optimal strategy up to all nodes, {sy}, oo Then,

Vala:N)ZVi(2* (G{N)); ?(N) }U‘])"'I’}[N}(fv,'N)-

But, Vo(#*((N) ks, 5(N)) = Vilai(N)) by
the principle of optimality and the fact that

5}'(;\7) is on the optimal path, Thus,

Volx:N) = Vy(x* J(N))+V, (v)(x

Dividing the both sides by N gives

Vo) o, Wlat7(N))+V, (V)(:cﬂN)
N N

Taking lim inf on both sides,

V(5 (N))+ Vigwy (xN)
5

lim inf @ 2 biminf
But N—j(N) are uniformly bounded by

finite number over N and rewards are uniform-

ly bounded for all N, Thus,

V'( N {;,N )

J_)’V-—HOESN_'OO'

Then,

. .,
lim inf——VO(i}N) = lim inf Volatj(N)) }V(N) )

Since N=#{N)-+(N—j(N)),

"o(x N) W27 (N))+ (N~f(N))

Z limi f ™

lim inf

Dividing denominator and numerator of the
tighthand side term by j(N),
Vala*/4(N))
lim inf — (;'N)>hm inf— 2N

1+N—J’+£N)
F{N)

which is

lim inf VO(;; ):"l

Vo(x Z )
F160)]

o(x" g (N)) VolatN)
But, lim inf —(}T>llm inf ==+ =
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the definition of lim inf. Thus,

.Vl N) L V(xYiN)
T T Yois NS
lim inf N Zlm inf N

Since x* is average optimal,

*,
lim inf VL("‘A;—MZUm inf

Yolx:N) for all x€ X,
4

v

Thus,
lim inf&i';NlZ‘lim inf}-;—“(;—N) for all x€X.

in summary, under Assumption 1, we obtained
three important tesults: coantinuity of average
optimal valve function at an algorithmically
optimal strategy, ¥, the average optimality of an
%, and average optimal value convergence. Even
though Assumption 2 gives only one result, the
fact that the accumulation point strategy, %, is
average optimal is more general since an algo-
rithmically optimal strategy, %, is included in the
set of accumulation point strategics of finite
horizon optimal strategies to any sequence of

nodes,
4, Conclusion

This papet took a basic step for the finite
solution of undiscounted deterministic infinite
horizon optimization problems by proving the
average optimality of an algorithmically optimal
strategy. The reachability condition with the
uniform boundedness assumption turned out to

be a sufficient condition for the existence of a

solution horizon which make it possible to
solve infinite hotizon problems finitely using
the notion of the solution horizon and
algorithmically optimal strategy. Under these
conditions we also proved average optimal
value convergence and continuity of the
average optimal value function at an algorithm-
ically optimal strategy. The above result can
be applied to the production planning problem
in Schochetman and Smith [12].
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