• Title/Summary/Keyword: time delay controller

Search Result 732, Processing Time 0.023 seconds

Improvement of the Response Characteristics Using the Fuzzy-PLL Controller (퍼지-PLL 제어기를 이용한 응답특성 개선)

  • Cho, Jeong-Hwan;Seo, Choon-Weon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.1
    • /
    • pp.175-181
    • /
    • 2005
  • This paper proposes the fuzzy-PLL control system for fast response time and precision control of automation systems. The conventional PLL has not only a jitter noise caused from such a demerit of the wide dead zone, but also a long delay interval that makes a high speed operation unable. In order to solve the problems, the proposed system, which provides the improvement in terms of the control region in high speed and precision control, first used the fuzzy control method for fast response time and when the error reaches the preset value, used the PLL method designing new PFD for precision control. The new designed multi-PFD improves the dead zone, jitter noise and response characteristics, which is consists of P-PFD(Positive edge triggered PFD) and N-PFD(Negative edge triggered PFD) and can improve response characteristics to increase PFD gain.

Large Flows Detection, Marking, and Mitigation based on sFlow Standard in SDN

  • Afaq, Muhammad;Rehman, Shafqat;Song, Wang-Cheol
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.2
    • /
    • pp.189-198
    • /
    • 2015
  • Despite the fact that traffic engineering techniques have been comprehensively utilized in the past to enhance the performance of communication networks, the distinctive characteristics of Software Defined Networking (SDN) demand new traffic engineering techniques for better traffic control and management. Considering the behavior of traffic, large flows normally carry out transfers of large blocks of data and are naturally packet latency insensitive. However, small flows are often latency-sensitive. Without intelligent traffic engineering, these small flows may be blocked in the same queue behind megabytes of file transfer traffic. So it is very important to identify large flows for different applications. In the scope of this paper, we present an approach to detect large flows in real-time without even a short delay. After the detection of large flows, the next problem is how to control these large flows effectively and prevent network jam. In order to address this issue, we propose an approach in which when the controller is enabled, the large flow is mitigated the moment it hits the predefined threshold value in the control application. This real-time detection, marking, and controlling of large flows will assure an optimize usage of an overall network.

Speed Control of Marine Gas Turbine Engine using Nonlinear PID Controller (비선형 PID 제어기를 이용한 선박용 가스터빈 엔진의 속도 제어)

  • Lee, Yun-Hyung;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.39 no.6
    • /
    • pp.457-463
    • /
    • 2015
  • A gas turbine engine plays an important role as a prime mover that is used in the marine transportation field as well as the space/aviation and power plant fields. However, it has a complicated structure and there is a time delay element in the combustion process. Therefore, an elaborate mathematical model needs to be developed to control a gas turbine engine. In this study, a modeling technique for a gas generator, a PLA actuator, and a metering valve, which are major components of a gas turbine engine, is explained. In addition, sub-models are obtained at several operating points in a steady state based on the trial running data of a gas turbine engine, and a method for controlling the engine speed is proposed by designing an NPID controller for each sub-model. The proposed NPID controller uses three kinds of gains that are implemented with a nonlinear function. The parameters of the NPID controller are tuned using real-coded genetic algorithms in terms of minimizing the objective function. The validity of the proposed method is examined by applying to a gas turbine engine and by conducting a simulation.

Resource Allocation Information Sorting Algorithm Variable Selection Scheme for MF-TDMA DAMA Satellite Communication System (MF-TDMA DAMA 위성통신 시스템에서의 자원할당정보 정렬 알고리즘 가변 선택기법 연구)

  • Park, Nam Hyoung;Han, Joo-Hee;Han, Ki Moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.1-7
    • /
    • 2020
  • In modern society, as technology has advanced and human life area has expanded, there has been an increasing demand for high-quality voice and video communications services without restrictions on time and place. In response to this demand, satellite communications systems that provide a wide range of communications and that offer multiple access are evolving day by day. In satellite communications systems such as Digital Video Broadcasting - Return Channel Via Satellite (DVB-RCS) and Warfighter Information Network-Tactical (WIN-T), the multi-frequency time division multiple access (MF-TDMA) demand assigned multiple access (DAMA) scheme is used for efficient resource allocation. In this scheme, since the satellite terminals periodically request resources from the network controller, and the network controller dynamically allocates resources, it is necessary to arrange resource allocation information from time to time. Shortening of the alignment time is a more important factor in a satellite communications system in which a long transmission delay occurs due to long-distance transmission and reception. In this paper, we propose a sorting algorithm variable-selection scheme that shortens the sorting time by cross-selecting the sorting algorithm based on a threshold value, while setting the number of frames in the MF-TDMA DAMA satellite communications system as the threshold value.

Real-time hybrid substructuring of a base isolated building considering robust stability and performance analysis

  • Avci, Muammer;Botelho, Rui M.;Christenson, Richard
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.155-167
    • /
    • 2020
  • This paper demonstrates a real-time hybrid substructuring (RTHS) shake table test to evaluate the seismic performance of a base isolated building. Since RTHS involves a feedback loop in the test implementation, the frequency dependent magnitude and inherent time delay of the actuator dynamics can introduce inaccuracy and instability. The paper presents a robust stability and performance analysis method for the RTHS test. The robust stability method involves casting the actuator dynamics as a multiplicative uncertainty and applying the small gain theorem to derive the sufficient conditions for robust stability and performance. The attractive feature of this robust stability and performance analysis method is that it accommodates linearized modeled or measured frequency response functions for both the physical substructure and actuator dynamics. Significant experimental research has been conducted on base isolators and dampers toward developing high fidelity numerical models. Shake table testing, where the building superstructure is tested while the isolation layer is numerically modeled, can allow for a range of isolation strategies to be examined for a single shake table experiment. Further, recent concerns in base isolation for long period, long duration earthquakes necessitate adding damping at the isolation layer, which can allow higher frequency energy to be transmitted into the superstructure and can result in damage to structural and nonstructural components that can be difficult to numerically model and accurately predict. As such, physical testing of the superstructure while numerically modeling the isolation layer may be desired. The RTHS approach has been previously proposed for base isolated buildings, however, to date it has not been conducted on a base isolated structure isolated at the ground level and where the isolation layer itself is numerically simulated. This configuration provides multiple challenges in the RTHS stability associated with higher physical substructure frequencies and a low numerical to physical mass ratio. This paper demonstrates a base isolated RTHS test and the robust stability and performance analysis necessary to ensure the stability and accuracy. The tests consist of a scaled idealized 4-story superstructure building model placed directly onto a shake table and the isolation layer simulated in MATLAB/Simulink using a dSpace real-time controller.

Post-Chlorination Process Control based on Flow Prediction by Time Series Neural Network in Water Treatment Plant

  • Lee, HoHyun;Shin, GangWook;Hong, SungTaek;Choi, JongWoong;Chun, MyungGeun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.197-207
    • /
    • 2016
  • It is very important to maintain a constant chlorine concentration in the post chlorination process, which is the final step in the water treatment process (hereafter WTP) before servicing water to citizens. Even though a flow meter between the filtration basin and clear well must be installed for the post chlorination process, it is not easy to install owing to poor installation conditions. In such a case, a raw water flow meter has been used as an alternative and has led to dosage errors due to detention time. Therefore, the inlet flow to the clear well is estimated by a time series neural network for the plant without a measurement value, a new residual chlorine meter is installed in the inlet of the clear well to decrease the control period, and the proposed modeling and controller to analyze the chlorine concentration change in the well is a neuro fuzzy algorithm and cascade method. The proposed algorithm led to post chlorination and chlorination improvements of 1.75 times and 1.96 times respectively when it was applied to an operating WTP. As a result, a hygienically safer drinking water is supplied with preemptive response for the time delay and inherent characteristics of the disinfection process.

A Study on Providing Real-Time Route Guidance Information by Variable Massage Signs with Driver Behavior (운전자 행태를 고려한 VMS의 실시간 경로안내 정보제공에 관한 연구)

  • Lee, Chang-U;Jeong, Jin-Hyeok
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.7 s.93
    • /
    • pp.65-79
    • /
    • 2006
  • The ATIS(Advance Traveler Information System), as one part of ITS, is a system aiming to disperse traffic volume on transportation networks by providing traffic information to transportation users on pre-trip and en-route trips. One of tools in ATIS is usage of VMS(Variable Message Signs). It provides to the drivers with direct information about state of processing direction. which is considered as the most effective method in ATIS. The purposes of providing VMS information are classified two categories. One is to provide simple information to drivers for their convenience. The other is to manage traffic demand to improve transportation network performance. However, for more effective and reliable VMS information, several strategies should be taken into account. The main VMS management strategy is "Traffic Diversion Strategy for minimum delay" when traffic congestion or incident are occurred. For effective operation. firstly. reasonable diversion traffic volume is determined by network traffic condition Secondly, it is necessary to make providing information strategy which reflects driver response behavior for controling diversion traffic volume. This paper focuses on the providing real-time route guidance information by VMS when congestion is occurred by the incidents. This sturdy estimates time-dependent system optimal diversion rate that inflects travel time and queue lengths using traffic flow simulation model on base Cellular Automata. In addition, route choice behavior models are developed using binary logit model for traffic information variable by traffic system controller. Finally, this study provides time-dependent VMS massage contents and degree of providing information in order to optimize the traffic flow.

Implementation of Power Line Modem Using a Direct Sequence Spread Spectrum Technique (직접대역확산 기법을 적용한 전력선 모뎀의 구현)

  • 송문규;김대우;사공석진;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.2
    • /
    • pp.218-230
    • /
    • 1993
  • A power line modem(PLM) which transfers data safely through power lines in houses or small offices is considered. When a power line is used for communications, transmitted signals could be affected by the channel characteristics such as frequency-selective fading, interference, and time-varying attenuation. In order to overcome these impairments, a direct sequence(DS) technique which is well known as an effective instrument against a variety of interferences and hostile channel properties is employed. Using a DS technique, however, requires more circuits such as PN code generator circuits, code modification circuits, and complicated synchronization circuits, and it also results in substantial acquisition delay. In this paper, some of these circuits are implemented via software programmed in the system controller, and the complicated synchronization circuits are replaced by simple circuits utilizing a 60 Hz power signal for synchronization. The synchronization ciruits used in this paper virtually eliminate the substantial acquisition delay, and is also designed to free influence of 60 Hz zero crossing jitters which reside in a power signal. As a result, a PLM using a DS technique is realized in the form of wall-socket plug, and the PLM hardware would be very much simplified.

  • PDF

Efficient Load Balancing Techniques Based on Packet Types and Real-Time QoS Evaluation in SDN (SDN 환경에서 실시간 패킷 유형과 QoS 평가 기반한 효율적인 Load Balancing 기법)

  • Yoon, Jung-Hyun;Kwon, Tae-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.807-816
    • /
    • 2021
  • With the technology of the 4th industrial revolution, network traffic is increasing due to an increase in supply, an increase in demand, and an increase in the complexity of traffic patterns. SDN, a concept in which H/W and S/W are separated in order to efficiently manage such massive traffic, is attracting attention as a next-generation network. A lot of research is being conducted on the merits of applying flexible policies by avoiding the problem of rigid vendor dependency by using the SDN controller implemented with S/W Opensource. Therefore, in this paper, we propose an efficient load balancing technique by grouping through the packet structure of the network layer using the control layer and infrastructure layer of SDN and analyzing the packet delay and reception rate.

An Optimal Design of a TDMA Baseband Modem for Relay Protocol (중계 프로토콜을 위한 TDMA 기저대역 중계모뎀의 최적 설계)

  • Bae, Yongwook;Ahn, Byoungchul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.124-131
    • /
    • 2014
  • This paper describes a design of an adaptive baseband modem based on TDMA(time division multiple access) with a relay protocol function for wireless personal area networks. The designed baseband modem is controlled by a master synchronization signal and can be configured a relay network up to 14 hops. For efficient data relay communications, the internal buffer design is optimized by implementing a priority memory bus controller to a single port memory. And the priority memory bus controller is also designed to minimize the number of synthesized logic gates. To implement the synchronization function of the narrowband TDMA relay communication, the number of gates has been reduced by dividing the frame synchronization circuits and the network slot synchronization circuits. By using these methods, the number of gates are used about 37%(34,000 gates) on Xilinx FPGA XC6SLX9 which has 90,000 gates. For the 1024-bit frame size with a 32-bit synchronization word, the communication reception rate is 96.4%. The measured maximum transmission delay of the designed baseband modem is 230.4 msec for the 14-hop relay communication.