• Title/Summary/Keyword: tidal variation

Search Result 366, Processing Time 0.038 seconds

Investigation of Water Quality in the Laver Bed at Yongwon Ri, Changwon Gun During the Spring and Neap Tide in March 1970 (경남 창원군 능동면 용원리 김밭의 수질에 대하여)

  • Won, Chong Hun
    • 한국해양학회지
    • /
    • v.5 no.1
    • /
    • pp.30-36
    • /
    • 1970
  • The water quality of the laver bed at Yongwon Ri, Changwon Gun was investigated during the spring and neap tide in March 1970. The effect of tide on the contents of various chemical constituents was irregular and the variation ranges of the contents were narrow. The pH value during flood and ebb tide was a constant of 8.2. The chlorosity range varied from 19.15 to 19.33g/l, the difference of 0.18g/l being comparatively small for coastal waters. The nutrient salts contents varied irregulary with the change in tide, but nitrite and soluble iron were not detected. In local distribution, chlorosity and silicate- silicon contents were found to be more at Sts. 1, 2 and 3 in the eastern area than at Sts. 4, 5 and 6 in the western area, wheras nitrate and ammonia contents were found to be more at Sts. 4, 5 and 6. The nitrate content was especially high, being twice as much as that at Sts. 1, 2 and 3 in the eastern area. In the spring tide, chlorosity was found, on the average, to be as much as 0.06g/l higher than in the neap tide, but the contents of nutrient salts were higher in the neap tide, especially the nitrate content was twice as much. When compared with other selected local laver beds, i.e., the tidal flats of the Nackdong and Somjin rivers, and of Wan Do Gun, the chlorosity level was highest but the nutrient salts contents level was, in general, slightly lower and the variation ranges narrow in the laver bed at Yongwon ri. The nitrate content, in particular was one tenth smaller than the others.

  • PDF

A Study on the Salinity Variation of Salt Water in an Estuary (하구(河口)의 해수(海水)의 염도변동(鹽度變動)에 관한 연구(研究) - 군산외항(群山外港)부근을 중심(中心)으로 -)

  • Lee, Jong Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 1981
  • Since the estuary is a very complex place in which the sea water and the fresh water meet, it is very difficult to make a general analytical description of salinity distribution in the estuary. As an attempt to investigate the characteristics of salinity variation in the estuary of the Geum River, the field observations were continuously carried out at three points near the Gunsan New Harbor at the time intervals 1 to 1.5 hours during one tidal cycle and the data were analysed. The following results were obtained; 1. It was reconfirmed that most of the ratios of the salinity to the conductivity were widely distributed between the range of 0.5 to 1.0. 2. The salinity showed the peak at the high water, and then it began to decrease gradually and had the lowest value 0 to 2 hours after the low water. 3. The density current was generally the intense mixing type and when the river discharge was very large it was of the moderate type. 4. The vertical salinity distribution was not significantly affected by the wave height. 5. The maximum vertical salinity differences were generally less than 10 g/l and the time of the occurrence of the minimum value was 0 to 3 hours after the low water when in the spring tide and in the neap tide it occurred 2 to 3 hours after the high water.

  • PDF

Structure and Dynamics of the Cold Water in the Western Channel of the Korea Strait (대한해협 서수도 냉수의 구조와 역학)

  • Cho, Yang-Ki;Kim, Kuh;Kim, Young-Gyu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.3
    • /
    • pp.132-139
    • /
    • 1997
  • CTD and current observation were taken to investigate the structure of the cold water in the Western Channel of the Korea Strait in October 1993. Thickness of the cold water in the deep trough of the strait changes from 20 m to 70 m according to the water depth. Thermocline between the Tsushima Warm Water and the cold water deepens from north to south with 0.00057 in slope. Temporal variation of the thickness appears to be related with the tidal current. The maximum variation is 20 m for 48 hours. Mean velocity of the cold water for 72 hours is 17 cm/sec southward. A simple model was used to understand dynamically the southward flow of the cold water and the return flow at the upper part in the lower layer. Calculated maximum southward flow and eddy viscosity coefficient are 7 cm/sec and 0.038 $m^2$/sec respectively in the model. Southward transport is $0.032$\times$10^6㎥/sec$ at the northern part in the trough and decreases from north to south due to the presence of the return flow. Southward transport increases with the increase in the upper layer transport but is not affected by the density of the upper layer or the interface slope.

  • PDF

Stability Behavior of Geotextile Tube Composite Structure by Slope Stability and 2-D Limit Equilibrium Analysis (2차원 한계평형 및 사면안정해석을 통한 지오텍스타일 튜브 복합구조물의 안정성 분석)

  • Oh, Young-In;Shin, Eun-Chul;Kang, Jeong-Gu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.4
    • /
    • pp.11-18
    • /
    • 2006
  • Geotextile has been used for various types of containers, such as small hand-filled sandbags, 3-dimensional fabric forms for concrete paste, large soil and aggregate filled geotextile gabion, prefabricated hydraulically filled containers. They are hydraulically filled with dredged materials and have been applied in coastal protection and scour protection, dewatering method of slurry, temporary working platform for bridge construction, temporary embankment for spill way dam construction. Recently, geotextile tube technology is no longer alternative construction technique but suitable desired solution. The paper presents the stability behavior of geotextile tube composite structure by 2-D limit equilibrium and slope stability analysis. 2-D limit equilibrium analysis was performed to evaluate the stability of geotextile tube composite structure to the lateral earth pressure and also transient seepage and stability analysis were conducted to determine the pore pressure distribution by tide variation and slope stability. Based on the results of this paper, the three types of geotextile tube composite structure is stable and also slope stability of overall geotextile tube composite structures is stable with the variation of tidal conditions.

  • PDF

The Pigments Variation of Phytoplankton in the Seomjin and Yeongsan River estuary (섬진강과 영산강 하구의 식물플랑크톤 기원 색소분포 변동)

  • Jeon, Hyeji;Lee, Eugene;Son, Moonho
    • Journal of Marine Life Science
    • /
    • v.5 no.2
    • /
    • pp.99-106
    • /
    • 2020
  • To investigate effect of variation in physiochemical conditions due to river discharge on phytoplankton, field surveys were conducted in the Seomjin and Yeongsan River estuaries from April to November 2016. The concentrations of DIN and DSi in Seomjin River estuary were gradually low as distance from upstream. On the other hands, the concentrations of DIN and DSi in Yeongsan River estuary were critically high at upstream, due to which is characterized as semi-enclosed eutrophic area. A total of 12 phytoplankton pigments were analyzed, and the distribution of each taxa was investigated using indicator for each phytoplankton taxa. Fucoxanthin, an indicator pigment of diatoms, showed an average of 0.61±1.00 ㎍ l-1 and 0.76±1.22 ㎍ l-1 in the Seomjin and Yeongsan River estuaries, respectively. Concentration of fucoxanthin was more than twice that of other pigments except chlorophyll a., indicating that diatoms were dominant taxa. Peridinin, an indicator pigment of dinoflagellate, showed some similar tendency to the microscopic observation, but mismatch results were also present, indicating a technical limitation of pigment analysis. Chlorophyll b, alloxanthin, and zeaxanthin, which are indicator pigments of green algae, cryptomonads, and cyanobacteria, were detected in both estuaries even though those taxa were not detected in microscopic observation. This indicates that the two estuaries were affected by freshwater species. Here, we can suggest that phytoplankton composition in estuary was directly influenced by the inflow from upstream. In particular, the phytoplankton population dynamics in Yeongsan River estuary was greatly associated with a large-scale artificial dyke, especially in summer rainy season. On the other hands, the seasonal and horizontal distribution of phytoplankton in Seomjin River estuary has changed along the salinity gradients and inflow-related changes.

Characteristics of Spatio-temporal Variation of the Water Quality in the Lower Keum River (금강 하류역에서 수질의 시공간적 변화특성)

  • YANG Han-Soeb;KIM Seong-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.3
    • /
    • pp.225-237
    • /
    • 1990
  • Various chemical constituents were measured from April to August 1988 at the down-ward 20 stations of Keum River, which is located in the Midwest of Korea, to understand the characteristics of water quality with respect to spatio-temporal variations of each constituent. The 24-hrs continuous measurements with 2-hrs interval were made simultaneously at station 2 near the estuary weir and station 9(Ganggyeong) of 35 km upstream from the weir in April. By the results observed for one day in April at station 2, salinity has a range of $7.88\~22.14\%_{\circ}$ and its temporal variability is identical to the pattern of tidal cycle in the neigh-bouring Kunsan Harbor. However, turbidity shows relatively high values only at an interval of 4~5 hours after the lowest salinity time, though hourly fluctuation of pH is very small. Silicate and dissolved inorganic nitrogen have inversively linear correlationships with salinity, implying the concentration of the two nutrients strongly regulated by estuarine mixing of sea and river waters. In contrast, phosphate sustains roughly a constant level over a wide salinity range and distinctly lower values than those corresponding to nitrate in the oceans. Such distributions of phosphate have been observed in some estuaries, and interpreted as driven by removal of dissolved phosphate into bottom sediments and the bufforing of phosphate by particulate matter. COD values at station 2 are relatively high in day-time(particularly afternoon) and in high-salinity periods. At station 9, saltwater intrusion was never found but water level changed to the extent of 2.5 m for one day. Although each parameter at this station exhibits very slight variations in their abundance for 24 hours compared with station 2, the contents of COD, silicate and ammonia are significantly higher than at station 2. Concentration of suspended matter is relatively high in the brackish water region up to $\~20$ km above the river mouth, probably due to strong tidal stirring of the bottom de-posits. Also, relatively high pH, COD and $O_2$ saturation at the upward stations of $40\~50$ km from the weir are presumably attributable to active photosynthesis of plants in the region. In general, COD and nutrients except phosphate are higher values at the upper stations than in the estuary zone, and show the highest abundances in July nearly at all stations. Finally, in the estuarine region tidal mixing of sea-river waters seems to be an important factor controlling the distributions of turbidity, COD, silicate and nitrate as well as salinity. However, water quality in the upward fresh-water zone is remarkably variable according to months or seasons.

  • PDF

Semiweekly variation of Spring Phytoplankton Community in Relation to the Freshwater Discharges from Keum River Estuarine Weir, Korea (금강하구언 담수방류와 춘계 식물플랑크톤 군집의 단주기 변동)

  • Yih, Won-Ho;Myung, Geum-Og;Yoo, Yeong-Du;Kim, Young-Geel;Jeong, Hae-Jm
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.3
    • /
    • pp.154-163
    • /
    • 2005
  • Irregular discharges of freshwater through the water gates of the Keum River Estuarine Weir, Korea, whose construction had been completed in 1998 with its water gates being operated as late as August 1994, drastically modified the estuarine environment. Sharp decrease of salinity along with the altered concentrations of inorganic nutrients are accompanied with the irregular discharges of freshwater into the estuary under the influence of regular semi-diurnal tidal effect. Field sampling was carried out on the time of high tide at 2 fixed stations(St.1 near the Estuarine Weir and St.2 off Kunsan Ferry Station) every other day for 4 months from mid-February 2004 to investigate into the semi-weekly variation of spring phytoplankton community in relation to the freshwater discharges from Keum River Estuarine Weir. CV(coefficient of variation) of salinity measurements was roughly 2 times greater in St.1 than that in St.2, reflecting extreme salinity variation in St.1 Among inorganic nutrients, concentrations of N-nutrients($NO_3^-,\;NO_2^-$ and $NH_4^+$) were clearly higher in St.1, to imply the more drastic changes of the nutrient concentrations in St.1. than St.2 following the freshwater discharges. As a component of phytoplankton community, diatoms were among the top dominants in terms of species richness as well as biomass. Solitary centric diatom, Cyclotella meneghiniana, and chain-forming centric diatom, Skeletonema costatum, dominated over the phytoplankton community in order for S-6 weeks each (Succession Interval I and II), and the latter succeeded to the former from the time of <$10^{\circ}C$ of water temperature. Cyanobacterial species, Aphanizomenon Posaquae and Phormidium sp., which might be transported into the estuary along with the discharged freshwater, occupied high portion of total biomass during Succession Interval III(mid-April to late-May). During this period, freshwater species exclusively dominated over the phytoplankton community except the low concentrations of the co-occurring 2 estuarine diatoms, Cyclotella meneghiniana and Skeletonema costatum. During the 4th Succession Interval when the water temperature was over $18^{\circ}C$, the diatom, Guinardia delicatula, was predominant for a week with the highest dominance of $75\%$ in discrete samples. To summarize, during all the Succession Intervals other than Succession Interval III characterized by the extreme variation of salinity under cooler water temperature than $18^{\circ}C$, the diatoms were the most important dominants for species succession in spring. If the scale and frequency of the freshwater discharge could have been adjusted properly even during the Succession Interval III, the dominant species would quite possibly be replaced by other estuarine diatom species rather than the two freshwater cyanobacteria, Aphanizomenon flosaquae and Phormidium sp.. The scheme of field sampling every other day for the present study was concluded to be the minimal requirement in order to adequately explore the phytoplankton succession in such estuarine environment as in Keum River Estuary: which is stressed by the unpredictable and unavoidable discharges of freshwater under the regular semi-diurnal tide.

Temporal Variation in the Distributions of the Benthic Heterotrophic Protozoa and Their Grazing Impacts on Benthic Bacteria and Microalgae in the Ganghwa Tidal Flat, Korea (강화도 펄 갯벌에서 저서성 원생동물 분포의 시간적 변이와 박테리아 및 미세 조류에 대한 포식압)

  • Yang, Eun-Jin;Choi, Joong-Ki;Yoo, Man-Ho;Cho, Byung-Cheol;Choi, Dong-Man
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.19-30
    • /
    • 2005
  • To investigate the seasonal distribution and grazing impacts of benthic protozoa in mud flat, their abundance, biomass and grazing rates of benthic protozoa were evaluated at interval of two or three month in Gangwha Island from April, 2002 to April, 2004. Heterotrophic flagellates and ciliates accounted for an average 98% of benthic protozoa biomass. Abundance and carbon biomass of heterotrophic flagellates ranged from $0.2{\times}10^5$ to $5.9{\times}10^5\;cells\;cm{-3}$ and from 0.02 to $9.2\;{\mu}gC\;cm^{-3}$, respectively. Biomass of heterotrophic flagellates was high in spring and fall, and showed no differences among stations. Abundance and biomass of heterotrophic flagellates decreased with the depth and were high within the surface 2.5 m sediment layer. The majority of heterotrophic flagellates were less than $10\;{\mu}m$ in length, and few euglenoid flagellates were larger than $20\;{\mu}m$. Abundance and carbon biomass of ciliates ranged from $0.1{\times}10^3$ to $17.8{\times}10^3\;cells\;cm^{-3}$ and from 0.02 to $9.1\;{\mu}gC\;cm^{-3}$, respectively, and those of ciliates were high in spring and fall. Biomass of ciliates was high within the surface 2.5 mm sediment layer and was higher at st. J2 and st. J3 than st. J1. Among the revealed benthic ciliates, the hypotrichs were the most important group in terms of abundance and biomass. During the sampling periods, an average 66% of benthic protozoa biomass was covered by ciliates. The seasonal distribution of benthic protozoa showed an almost similar fluctuation pattern to that of chlorophyll-a. The results suggest that the biomass of benthic protozoa were mainly controlled by prey abundance, for example, diatoms. Based on ingestion rates, benthic protozoa removed from 13.4 to 40.7% of bacterial production and from 20.1 to 36.4% of primary production. Ingestion rates of benthic protozoa on bacteria and microphytobenthos were high in April. Benthic protozoa in this study area may play a pivotal role in the carbon flow of the benthic microbial food web during spring.

Geochemistry and Water Quality in the Tidal Flat of Saemangum Area, West Sea of Korea in Summer (하계 새만금 갯벌의 수질 분포 및 지화학적 특성에 관한 연구)

  • Park, Gyung Soo;Park, Soung Yun;Lee, Sam Geun;Lee, Yoon
    • Journal of Wetlands Research
    • /
    • v.6 no.1
    • /
    • pp.133-147
    • /
    • 2004
  • Environmental quality(water and sediment) was analyzed in the tidal flat of Saemangum of Jeonbuk Province, the west coast of Korea, using the 101 sediment samples and 69 water samples collected in September 4~13, 2001. Major water quality parameters with the means of 69 surface water samples are as follows; $25.51{\pm}0.68^{\circ}C$ for water temperature, $29.88{\pm}5.01$ for salinity, $1.40{\pm}0.78mg/L$ for COD, $0.352{\pm}0.417mg/L$ for DIN, and $0.027{\pm}0.023mg/L$ for phosphate, respectively. Higher values were found at the subestuary of Dongjin and Mangyung River, and lower values at the Saemangum embayment and Gomso Bay. There was a significant negative correlation between salinity and the other water quality parameters(p<0.0001) such as COD, nutrients, SS and N/P. This correlation suggested that the major pollution sources be from terrestrial inputs through tributaries in this area. Principal component analysis clearly revealed a spatial variation of water quality; stations with higher values of nutrients and COD located subestuary of tributaries. 14 sediment quality parameters including 8 trace metals were measured using the 101 surface sediment samples. Average values for the parameters are as follows; Al $2.28{\pm}0.92%$, Cd $0.61{\pm}0.27ppm$, Cu $8.95{\pm}4.06ppm$, Fe $1.19{\pm}0.37%$, Mn $182.31{\pm}77.45ppm$, Ni $10.83{\pm}4.97ppm$, Pb $15.20{\pm}4.35ppm$, Zn $41.34{\pm}34.62ppm$, COD $2.68{\pm}1.85mg/g\;dry$, AVS $0.04{\pm}0.08mg/g\;dry$, IL $1.29{\pm}1.08%$, water content $24.11{\pm}4.49%$, TN $0.02{\pm}0.02%$, TC $0.22{\pm}0.30%$. Spatial variations of sediment quality were not clear as water quality. Some higher values were found at the subestuary of Gum River and lower values at the other area. There was a significant positive correlation between the heavy metal concentrations and organic materials within the sediment(p<0.05). Enrichment factors showed the ranges of 1~2 for most of the metals in the sediment except zinc(1~6), indicating no serious exogenous input of heavy metals in the study area. Also, the heavy metal concentrations in the sediment were within the ranges found at the natural marine environments.

  • PDF

Spatial Characteristic in Food Sources for Benthic Invertebrates in an Estuary Tidal flat: Carbon and Nitrogen Stable Isotope Analyses (안정동위원소 비를 이용한 하구 갯벌에 있어서 저서 무척추 동물의 유기물 기원의 공간적 특성)

  • Shin, Woo-Seok;Lee, Yong-Doo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.1
    • /
    • pp.53-59
    • /
    • 2010
  • The spatial variability in the food chain structure of an estuarine environment(Nanakita estuarine, Japan) was investigated using stable carbon and nitrogen isotope. Potential organic matter sources(TP:Terrstrial Plant, MPOM:Marine particulate organic matter, BMA:Benthic microalgae, EPOM:Estuarine particulate organic matter), sedimentary organic matter and benthic invertebrates(Nuttallia olivacea and Nereidae) were sampled at four locations with different tidal flat types(e.g. sanddy, sanddy-muddy and muddy). The main objective of the present study was to determine food sources of Nuttallia olivacea and Nereidae along with small-scale spatial variability within the community of benthic invertebrates. TP(${\delta}^{13}C=-26.6{\pm}0.76$ and ${\delta}^{15}N=2.7{\pm}0.31$) and EPOM(${\delta}^{13}C=-25.5{\pm}0.13$ and ${\delta}^{15}N=5.2{\pm}0.46$) were isotopically distinct from BMA(${\delta}^{13}C=-16.3$ and ${\delta}^{15}N=6.2$) and MPOM(${\delta}^{13}C=-19.6{\pm}0.08$ and ${\delta}^{15}N=8.9{\pm}1.70$). ${\delta}^{13}C$ values of sedimentary organic matter showed a distinct gradient in the range of -27.4 to -22.8‰ with a declining trend from the upstream to the downstream stations. The stable carbon and nitrogen isotope values of benthic invertebrates in the study site was -22.8 to -18.4‰ for ${\delta}^{16}C$ and 8.1 to 11.9‰ or ${\delta}^{15}N$, respectively. Mixing model(Isosource) calculations based on stable isotope measurements showed that benthic invertebrates of Nuttallia olivacea and Nereidae were found to be dominated by MPOM and BMA in stations. Whereas, TP and EPOM showed little influence to benthic invertebrates. The current result suggests that the different contribution for benthic invertebrates should be affected by both seasonal variation and physical factor among stations.