Temporal Variation in the Distributions of the Benthic Heterotrophic Protozoa and Their Grazing Impacts on Benthic Bacteria and Microalgae in the Ganghwa Tidal Flat, Korea

강화도 펄 갯벌에서 저서성 원생동물 분포의 시간적 변이와 박테리아 및 미세 조류에 대한 포식압

  • Published : 2005.02.28

Abstract

To investigate the seasonal distribution and grazing impacts of benthic protozoa in mud flat, their abundance, biomass and grazing rates of benthic protozoa were evaluated at interval of two or three month in Gangwha Island from April, 2002 to April, 2004. Heterotrophic flagellates and ciliates accounted for an average 98% of benthic protozoa biomass. Abundance and carbon biomass of heterotrophic flagellates ranged from $0.2{\times}10^5$ to $5.9{\times}10^5\;cells\;cm{-3}$ and from 0.02 to $9.2\;{\mu}gC\;cm^{-3}$, respectively. Biomass of heterotrophic flagellates was high in spring and fall, and showed no differences among stations. Abundance and biomass of heterotrophic flagellates decreased with the depth and were high within the surface 2.5 m sediment layer. The majority of heterotrophic flagellates were less than $10\;{\mu}m$ in length, and few euglenoid flagellates were larger than $20\;{\mu}m$. Abundance and carbon biomass of ciliates ranged from $0.1{\times}10^3$ to $17.8{\times}10^3\;cells\;cm^{-3}$ and from 0.02 to $9.1\;{\mu}gC\;cm^{-3}$, respectively, and those of ciliates were high in spring and fall. Biomass of ciliates was high within the surface 2.5 mm sediment layer and was higher at st. J2 and st. J3 than st. J1. Among the revealed benthic ciliates, the hypotrichs were the most important group in terms of abundance and biomass. During the sampling periods, an average 66% of benthic protozoa biomass was covered by ciliates. The seasonal distribution of benthic protozoa showed an almost similar fluctuation pattern to that of chlorophyll-a. The results suggest that the biomass of benthic protozoa were mainly controlled by prey abundance, for example, diatoms. Based on ingestion rates, benthic protozoa removed from 13.4 to 40.7% of bacterial production and from 20.1 to 36.4% of primary production. Ingestion rates of benthic protozoa on bacteria and microphytobenthos were high in April. Benthic protozoa in this study area may play a pivotal role in the carbon flow of the benthic microbial food web during spring.

강화도 장화리의 펄 갯벌에 서식하는 저서 원생동물 군집의 계절 분포 및 섭식률을 파악하기 위하여 2002년 4월부터 2004년 4월까지 총 3개의 정점을 선정하여 2-3개월 간격으로 조사를 수행하였다. 저서 원생동물의 현존량과 생물량은 섬모충류와 종속영양 편모류에 의해 98% 이상 우점하여 나타났으며, 그 외 종속영양 와편모류와 아메바 그룹이 일부 시기에 관찰되었으나 중요하지 않은 그룹으로 나타났다. 종속영양 편모류의 현존량과 탄소량은 각각 $0.2-5.9{\times}10^5\;cells\;cm^{-3}$$0.02-9.2\;{\mu}C\;cm^{-3}$로 분포하였으며, 생물량은 춘계와 추계에 비교적 높은 분포를 보였다. 종속영양 편모류는 표충 2.5 mm 이내에서 다른 층에 비해 높은 분포를 보였으며, 종속영양 편모류의 수평적 분포는 정점별로 차이가 없는 것으로 나타났다. 종속영양 편모류는 $10{\mu}m$이하의 크기에 의하여 주로 우점하여 나타났으나, 2월과 4월 사이에 $20{\mu}m$ 이상의 종속영양 유글레나가 높게 출현하였다 섬모충류의 현존량과 생물량은 각각 $0.1-17.8{\times}10^3\;cells\;cm^{-3}$$0.02-9.1\;{\mu}gC\;cm^{-3}$ 범위로 분포하였으며 춘계와 추계에 높은 분포를 보였다. 섬모충류 그룹은 주로 하모류에 의해 우점 하였으며, 계절별로 두드러진 우점 종들은 관찰되지 않았다. 섬모충류의 수직적 분포는 표층 2.5 mm이내에서 높은 분포를 보였으며, 정점별 분포는 조간대 상부 정점에 비해 조간대 하부 정점에서 높은 분포를 보였다. 섬모충류의 시.공간적 분포는 저서 미세조류의 생물량 분포와 유사한 양상을 보였다. 조사기간동안 저서 원생동물 그룹의 탄소량은 섬모충류에 의해 평균 66%의 높은 우점률을 보였으며, 저서 원생동물의 계절변동은 저서 미세조류의 변동과 유사한 양상을 보였다. 본 연구에서 저서 원생동물의 섭식률을 측정한 결과 박테리아 생산력과 저서 미세조류 생산력의 각각 13.4-40.7%와 20.1-36.4%를 제거하였으며, 박테리아에 대한 섭식률은 섬모충류에 비해 종속영양 편모류에 의해 더 높은 것으로 나타났다. 박테리아와 돌말류에 대한 저서 원생동물의 섭식률은 춘계에 가장 높았으며 저서 미세생물 먹이 망에서 저서 원생동물은 미세생물 군집의 생물량이 높은 춘계에 박테리아와 돌말류의 포식자로서 중요한 역할을 하고 있음을 시사하였다.

Keywords

References

  1. 고철환, 1991. 한국 서해 펄 갯벌에서의 미세조류에 의한 제1차 생산 및 생물량, KOSEF 891-0505-015-2
  2. 김기웅, 2000. 강화 여차리, 대부 방아머리, 화성 주곡리 갯벌의 저서 동물 군집, 서울대학교 석사학위 논문, 88pp
  3. 노재훈, 최중기, 1998. 펄갯벌 저서규조류의 이동력이 갖는 생태학적 기능. 해양연구, 20: 179-187
  4. 오상희, 1990. 서해 만경.동진 펄 조간대의 환경과 저서규조류 군집. 서울대학교 석사학위 논문, 99pp
  5. 오승진, 문창희, 박미옥, 2004. 한국 서해 새만금 갯벌에서 저서미세조류의 생체량과 군집 조성에 대한 HPLC 분석. 한국수산학회, 37: 215-225
  6. 유만호, 2004. 강화도 장하리 펄 갯벌에서 저서 미세조류의 계절변동 연구, 인하대학교 석사학위 논문, 82pp
  7. 최휴창, 2002. 강화 펄 조간대에서의 저서성 미세조류 연구, 인하대학교 석사학위 논문, 67pp
  8. Azam, E, T. Fenchel, J.G. Field, J.S. Gray, L.A. Meyer-Reil and E Thingstad, 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser., 10: 257-263 https://doi.org/10.3354/meps010257
  9. Bak, R.P.M. and G. Nieuwland, 1989. Seasonal fluctuations in benthic protozoan populations at different depths in marine sediments. Neth. J. Sea. Res., 24: 37-44 https://doi.org/10.1016/0077-7579(89)90168-3
  10. Bak, R.P.M., F.C. van Duyl, G. Nieuwland and A.J. Kop, 1991. Benthic heterotrophic nanoflagellates in North Sea filed/mesocosm bottoms and their response to algal sedimentation. Ophelia, 33: 187-196 https://doi.org/10.1080/00785326.1991.10429709
  11. Baldock, B.M. and M.A. Sleigh, 1988. The ecology of benthic protozoa in rivers-seasonal variation in numerical abundance in fine sediments. Arch. Hydrobiol. 111: 409-42l
  12. Borsheim, K.Y. and G. Bratbak, 1987. Cell volume to cell carbon conversion factors for a bacterivorus Monas sp. enriched from sea waters. Mar. Ecol. Prog. Ser., 36: 171-175 https://doi.org/10.3354/meps036171
  13. Buffan-Dubau, E. and L.R. Carman, 2000. Extraction of benthic microalgal pigments for HPLC analysis. Marine Ecol. Pro. Ser., 204: 293-297 https://doi.org/10.3354/meps204293
  14. De Jonge, V.N. and F. Colijn, 1994. Dynamics of microphytobenthos biomass in the Ems estuary. Mar. Ecol. Prog. Ser., 104: 185-196 https://doi.org/10.3354/meps104185
  15. Dietrich, D. and H. Arndt, 2000. Biomass partitioning of benthic microbes in a baltic inlet: relationships between bacteria, algae, heterotrophic flagellates and ciliates. Mar. Biol. 136: 309-322 https://doi.org/10.1007/s002270050689
  16. Epstein, S.S., 1997a. Microbial food webs in marine sediments. I. Trophic interactions and grazing rates in two tidal flat communities. Microb. Ecol., 34: 188-198 https://doi.org/10.1007/s002489900048
  17. Epstein, S.S., 1997b. Microbial food webs in marine sediments. II. Seasonal change in trophic interaction in a sandy tidal flat communities. Microb. Ecol., 34: 199-209 https://doi.org/10.1007/s002489900049
  18. dEpstein, S.S. and M.P. Shiaris, 1992. Rates of microbenthic and meiobenthic bacteriovory in a temperate muddy tidal flat community. Appl. Environ. Microb., 58: 2426-2431
  19. Epstein, S.S. and J. Rossel, 1995. Methodology of in situ grazing experiments; evaluation of a new vital dye for preparation of flourescently labeled bacteria. Mar. Ecol. Prog. Ser. 128: 143-150 https://doi.org/10.3354/meps128143
  20. Edler, L., 1979. Phytoplankton and chlorophyll recommendations for biological studies in the Baltic Sea. Baltic Marine Biologists Publication, 5: 1-38
  21. Fenchel, T., 1969. The ecology of marine microbenthos IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities with special reference to the ciliated protozoa. Ophelia, 6: 1-182 https://doi.org/10.1080/00785326.1969.10409647
  22. Finlay, B., P. Bannister and J. Stewart, 1979. Temporal variation in benthic ciliates and the application of association analysis. Freshw. Biol.9: 45-53 https://doi.org/10.1111/j.1365-2427.1979.tb01485.x
  23. Finlay, B.J., J.O. Corliss, G. Esteban and T. Fenchel, 1996. Biodiversity at the microbial level: the number of free-living ciliates in the biosphere. Q. Rev. Bio., 71: 221-237 https://doi.org/10.1086/419370
  24. Garstecki, T., R Verhoeven, S.A. Wickham and H. Arndt, 2000. Benthic-pelagic coupling: a comparison of the community structure of benthic and planktonic heterotrophic protists in shallow inlets of the southern Baltic. Freshw. Bio., 45: 147-167 https://doi.org/10.1046/j.1365-2427.2000.00676.x
  25. Gasol, J.M., 1993. Benthic flagellates and ciliates in fine freshwater sediments: calibration of a live counting procedure and estimation of their abundance. Micrbo. Ecol., 25: 247-262
  26. Gregorio, F.-L., 2000. Protozoan species in three epibenthic areas of the Canabrian Sea: relations with environmental factors. J. Mar. BioI. Ass. U.K. 80: 407-418 https://doi.org/10.1017/S0025315400002101
  27. Hamels, I., K Muylaert, G. Casteleyn and W. Vyverman, 2001. Uncoupling of bacterial production and flagellate grazing in aquatic sediments: a case study from an intertidal flat. Aqudt. Microb. Ecol., 25: 31-42 https://doi.org/10.3354/ame025031
  28. Hamels, I., K. Sabbe, K. Muylaert and W. Vyverman, 2004. Quantitative importance, compostition, and seasonal dynamics of protozoan communities in polyhaine versus freshwater intertidal sediments. Microb. Ecol., 47: 18-29 https://doi.org/10.1007/s00248-003-2011-x
  29. Hondeveld, B.J.M., R.P.M. Bak and F.C. van Duyl, 1992. Bacterivory by heterotrophic nanoflagellates in marine sediments measured by uptake of flourescently labeld bacteria. Mar. Ecol. .Prog. Ser., 89: 63-71 https://doi.org/10.3354/meps089063
  30. Hondeveld, B.J.M., G, Nieuwland, F.C. Duyl and R.P.M. Bak, 1994. Temporal and spatical variations in heterotrophic nanoflagellates abundance in North Sea sediment. Mar. Ecol. Prog. Ser., 109: 235-243 https://doi.org/10.3354/meps109235
  31. Kemp, P.F., 1988. Bacterivory by benthic ciliates: significance as a carbon source and impact on sediment bacteria. Mar. Ecol. Prog. Ser., 49: 163-169 https://doi.org/10.3354/meps049163
  32. Kim, D.S., J.G, Je and J.H. Lee, 2000. The community structure and spatial distribution of Meiobenthos in the Kanghwa tidal flat, west coast of Korea. Ocean Res., 22: 15-23
  33. Korea Marinetime Institute(KMI), 2004. Development of evaluation techniques on biogeochemical purification capabilities of microorganisms in the mud flat
  34. Lee, W.J. and D.J. Patterson, 2002a. Abundance and biomass of heterotrophic flagllates, and factors controlling their abundance and distribution in sediments of Botany Bay. Microb. Ecol., 43: 467¬48l
  35. Lee, W.J. and D.J. Patterson, 2002b. Optiming the extraction of bacteria, heterotrophic protists and diatoms, and estimating their abundance and biomass from intertidal sandy sediments. J. Kor. Soc. Ocean., 37: 59-65
  36. Lucchesi, P. and G. Santangelo, 1997. The interstitial ciliates microcomunity of a Mediterranean sandy shore under differing hydrodynamic disturbance. Ital J. Zool., 64: 253-259 https://doi.org/10.1080/11250009709356205
  37. Patterson, D.J., J. Larsen and J.O. Corless, 1989. The ecology of heterotrophic flagellates and ciliates living in marine sediments. Progr. Protistol., 3: 185-277
  38. Sheldon, R.W., P. Nival and F. Rassoulzadegan, 1986. An experimental investigation of a flagellate-ciliate-copepod food chain with some observations relevant to the linear biomass hypothesis. Limnol. Oceanogr., 31: 184-188 https://doi.org/10.4319/lo.1986.31.1.0184
  39. Sherr, B.F., E.B. Sherr and R.D. Fallon, 1987. Use of monodispersed, fluorescently-labeled bacteria to estimate in situ protozoan bacterivory. Appl. Environ. Microbiol., 53: 958-965
  40. Sherr, E.B. and B.F. Sherr, 1994. Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs. Microb. Ecol., 28: 223-235 https://doi.org/10.1007/BF00166812
  41. Sieburth, J. McN., V. Smetacek and J. Lenz, 1978. Pelagic ecosystem structure: heterotrophic components of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr., 23: 1256-1263 https://doi.org/10.4319/lo.1978.23.6.1256
  42. Sundback, K., P. Nilsson, C. Nilsson and B. Jonsson, 1996. Balance between autotrophic and heterotrophic components and processes in microbenthic communities of sandy sediment: A field study. Estuar. Coast. Shelf Sci., 43: 689-706 https://doi.org/10.1006/ecss.1996.0097
  43. Tso, S.F. and G.L Taghon, 1997. Enumeration of protozoa and bacteria in muddy sediment. Microb. Ecol., 33: 144-148 https://doi.org/10.1007/s002489900016
  44. Turley, C.M., R.C. Newell and D.B. Robins, 1986. Survival strategies of two small marine ciliates and their role in regulating bacterial community structure under experimental conditions. Mar. Ecol. Prog. Ser., 33: 59-70 https://doi.org/10.3354/meps033059
  45. Wickham, S., A. Gieseke and U.G. Berninger, 2000. Benthic ciliates identification and enumeration: an improved methodology and its application. Aqut. Micro. Ecol., 22: 79-91 https://doi.org/10.3354/ame022079
  46. Woo, H.J. and J.G. Je, 2002. Changes of sedimentary environments in the southern tidal flat of Kanghwa Island. Ocean and Polar Res., 24: 331-343 https://doi.org/10.4217/OPR.2002.24.4.331
  47. Yoo, M.H. and J.K. Choi, 2005. Seasonal distribution and primary production of microphytobenthos on an intertidal mud flat of the Janghwa in Ganghwa Island, Korea. The sea. In press