Spatial Characteristic in Food Sources for Benthic Invertebrates in an Estuary Tidal flat: Carbon and Nitrogen Stable Isotope Analyses

안정동위원소 비를 이용한 하구 갯벌에 있어서 저서 무척추 동물의 유기물 기원의 공간적 특성

  • Shin, Woo-Seok (Graduate school of Engineering Department of Ecological Engineering, Tohoku University) ;
  • Lee, Yong-Doo (Department of Environmental Engineering, Jeju National University)
  • 신우석 (일본 동북대학 대학원 공학 연구과 생태공학 연구실) ;
  • 이용두 (제주국립대학교 해양과학대학 환경공학과)
  • Received : 2009.12.01
  • Accepted : 2010.02.08
  • Published : 2010.02.25

Abstract

The spatial variability in the food chain structure of an estuarine environment(Nanakita estuarine, Japan) was investigated using stable carbon and nitrogen isotope. Potential organic matter sources(TP:Terrstrial Plant, MPOM:Marine particulate organic matter, BMA:Benthic microalgae, EPOM:Estuarine particulate organic matter), sedimentary organic matter and benthic invertebrates(Nuttallia olivacea and Nereidae) were sampled at four locations with different tidal flat types(e.g. sanddy, sanddy-muddy and muddy). The main objective of the present study was to determine food sources of Nuttallia olivacea and Nereidae along with small-scale spatial variability within the community of benthic invertebrates. TP(${\delta}^{13}C=-26.6{\pm}0.76$ and ${\delta}^{15}N=2.7{\pm}0.31$) and EPOM(${\delta}^{13}C=-25.5{\pm}0.13$ and ${\delta}^{15}N=5.2{\pm}0.46$) were isotopically distinct from BMA(${\delta}^{13}C=-16.3$ and ${\delta}^{15}N=6.2$) and MPOM(${\delta}^{13}C=-19.6{\pm}0.08$ and ${\delta}^{15}N=8.9{\pm}1.70$). ${\delta}^{13}C$ values of sedimentary organic matter showed a distinct gradient in the range of -27.4 to -22.8‰ with a declining trend from the upstream to the downstream stations. The stable carbon and nitrogen isotope values of benthic invertebrates in the study site was -22.8 to -18.4‰ for ${\delta}^{16}C$ and 8.1 to 11.9‰ or ${\delta}^{15}N$, respectively. Mixing model(Isosource) calculations based on stable isotope measurements showed that benthic invertebrates of Nuttallia olivacea and Nereidae were found to be dominated by MPOM and BMA in stations. Whereas, TP and EPOM showed little influence to benthic invertebrates. The current result suggests that the different contribution for benthic invertebrates should be affected by both seasonal variation and physical factor among stations.

일본 나나키다 하구 갯벌에 있어서 탄소 질소 안정동위원소를 이용해 먹이 연쇄의 공간적 가변성에 대해 조사했다. 서로 다른 특징을 갖고 있는 갯벌에서 잠재적인 유기물(육상식물, 해양 입자성 유기물, 저서 부착 미세조류 및 하구 입자성 유기물), 퇴적유기물 및 저서 무척추 동물(Nuttallia olivacea and Nereidae)에 대한 샘플링을 행했다. 본 연구의 목적은 좁은 공간적 가변성에 따른 Nuttallia olivacea와 Nereidae의 먹이원을 결정하는 것이다. 육상식물(${\delta}^{13}C=-26.6{\pm}0.76$, ${\delta}^{15}N=2.7{\pm}0.31$) 과 하구 입자성 유기물(${\delta}^{13}C=-25.5{\pm}0.13$, ${\delta}^{15}N=5.2{\pm}0.46$)은 저서 부착 미소조류${\delta}^{13}C=-16.3$, ${\delta}^{15}N=6.2$)와 해양 입자성 유기물(${\delta}^{13}C=-19.6{\pm}0.08$, ${\delta}^{15}N=8.9{\pm}1.70$)의 탄소 질소 안정동위원소비 보다 낮았다. 퇴적물의 탄소 안정동위원소 비는 -27.4~-22.8‰ 나타냈으며, 하구에서 하천 방향으로 갈수록 낮은 탄소 안정동위 원소비를 나타냈다. 저서 무척추 동물의 탄소 질소 안정동위원소비는 각각 -22.8~-18.4‰, 8.1~11.9‰ 범위를 나타냈다. 이러한 결과와 더불어 혼합 모델을 이용해 저서 무척추 동물의 먹이원의 기여율을 추정한 결과 해양 입자성유기물과 저서 부착 미세조류의 기여율은 높았지만, 육상식물과 하구 입자성 유기물의 기여율은 비교적 낮았다. 이러한 저서 무척추 동물의 먹이 기여는 각 장소마다 계절 및 물리적 환경 요소의 영향을 받는다고 사료된다.

Keywords

References

  1. Alfaro, A.C. Alfaro, Thomas, F., Sergent, L, Duxbury, M. 2006, "Identification of trophic interactions within an estuarine food web(northern New Zealand) using fatty acid biomarkers and stable isotopes. Estuarine Coastal and Shelf Science", Vol 70, 271-286. https://doi.org/10.1016/j.ecss.2006.06.017
  2. Bachock, Z., Mfilinge, P.L., Tsuchiya, M. 2003, "The diet of the mud clam Geloina coaxans(Mollusca, Bivalvia) as indicated by fatty acid markers in a subtropical mangrove forest of Okinawa, Japan. Journal of Experimental Marine Biology and Ecology", Vol 292, 187-197. https://doi.org/10.1016/S0022-0981(03)00160-6
  3. Doi, H., Matsumasa, M., Toya, T, Satoh, N, Mizota, C., Maki, Y, Kikuchi, E. 2005, "Spatial shifts in food sources for macrozoobenthos in an estuarine ecosystem: Carbon and nitrogen stable isotope analyses. Estuarine, Coastal and Shelf Science", Vol 64, 316-322. https://doi.org/10.1016/j.ecss.2005.02.028
  4. Donald, L., Phillips, Paul, L., Koch. 2002, "Incorporating concentration dependence in stable isotope mixing models. Oecologia", Vol 130, 114-125. https://doi.org/10.1007/s004420100786
  5. Gustafson, L., Showers, W., Kwak, T., Levine, J. and Stoskopf, M. 2007, "Temporal and spatial variability in stable isotope compositions of a freshwater mussel: implications for biomonitoring and ecological studies, Oecologia", Vol 152, 140-150. https://doi.org/10.1007/s00442-006-0633-7
  6. Hall, O., R., Jr., Wallace, J. B. and Eggert, S. L. 2000, "Organic matter flow in steream food webs with reduced detrital resource base. Ecology", Vol 81, 3445-3463. https://doi.org/10.1890/0012-9658(2000)081[3445:OMFISF]2.0.CO;2
  7. Jahnke, R. A., Nelson, J. R., Marinelli, R. L., Eckman, J. E., 2000, "Benthic flux of biogenic elements on the southeastern US continental shelf: influence of pre water advective transport and benthic microalgae. Cont. Shelf Res.", Vol 20, 109-127. https://doi.org/10.1016/S0278-4343(99)00063-1
  8. Kasai, A. and Nakata, A. 2005, "Utilization of terrestrial organic matter by the bivalve Corbicula japonica estimated from stable isotope analysis. Fisheries Science", Vol 71, 151-158. https://doi.org/10.1111/j.1444-2906.2005.00942.x
  9. DeNiro, M. J. and Epstein, S., 1978, "Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta", Vol 42, 495-506. https://doi.org/10.1016/0016-7037(78)90199-0
  10. Minagawa, M. and Wada, E., 1984, "Stepwise enrichment of $\delta^{15}$N along food chainsFurther evidence and the relation between $\delta^{15}$N and animal age. ibid.", Vol 45, 341-351.
  11. Meziane, T. and Tsuchiya, M., 2002, "Organic matter in a subtropical mangroveestuary subjected to wastewater discharge: origin and utilisation by two macrozoobenthic species. Journal of Sea Research", Vol 47, 1-11. https://doi.org/10.1016/S1385-1101(01)00092-2
  12. Riera, P. and Richard, P., 1996, "Isotopic Determination of Food Sources of Crassostrea gigas Along a Trophic Gradient in the Estuarine Bay of Marennes-Oleron. Estuarine Coastal and Shelf Science", Vol 42, 347-360. https://doi.org/10.1006/ecss.1996.0023
  13. Rooker, J. R., Turner, J. P. and Holt, S. A., 2006, "Trophic ecology of Sargassum-associated fishes in the Gulf of Mexico determined from stable isotopes and fatty acids. Marine Ecology Progress Series", Vol 313, 249-259. https://doi.org/10.3354/meps313249
  14. Sakamaki, T. and Nishimura, O., 2009, "Is sediment mud content a significant predictor of macrobenthos abundance in lowmud-content tidal flats? Marine and Freshwater Research", Vol 60, 160-167. https://doi.org/10.1071/MF08173
  15. Sakamaki, T. and Nishimura, O., 2007, "Physical control of sediment carbon content in an estuarine tidal flat system(NanakitaRiver, Japan) : A mechanistic case sutdy, Estuarine", Coastal and Shelf Science, Vol 73, 781-791. https://doi.org/10.1016/j.ecss.2007.03.019
  16. Sakano, H., Fujiwara, E., Nohara, S. and Ueda, H. 2005, "Estimation of nitrogen stable isotope turnover rate of Oncorhynchus nerka, Environ. Biol. Fish", Vol 72, 13-18. https://doi.org/10.1007/s10641-004-4187-4
  17. Sauriau, P.G. and Kang, C.K., 2000, "Stable isotope evidence of benthic microalgae-based growth and secondary production in the suspension feeder Cerastoderma edule(Mollusca, Bivalvia) in the Marennes-Oleron Bay. Hydrobiologia", Vol 440, 317-329. https://doi.org/10.1023/A:1004156102278
  18. Shin, W.S., Fujibayashi, M, Nomura, M, Nakano, K. and Nishimura, O. 2008, "The origin and characteristics of sediment organic matters at three tidal flats in estuary of Nanakita River. Environmental engineering Research(Japan)", Vol 45, 547-552.
  19. Waldron, S., Tatner, P., Jack, I. and Arnott, C., 2001, "The Impact of Sewage Discharge in a Marine Embayment: A Stable Isotope Reconnaissance. Estuarine Coastal and Shelf Science", Vol 52, 111-115. https://doi.org/10.1006/ecss.2000.0731
  20. Stanislas, D., Francis, O., Julio, C.M.L., Michel, R., Sebastien, L., 2007, "Small-scale spatial variability of food partitioning between cultivated oysters and associated suspension feeding species, as revealed by stable isotopes. Marine Ecology Progress Series", Vol 336, 151-160. https://doi.org/10.3354/meps336151
  21. Tomiyama, T., Komizunai, N., Shirase, T., Ito, K. and Omori, M., 2008, "Spatial intertidal distribution of bivalves and polychaetes in relation to environment conditions in the Natori River estuary, Japan. Estuarine, Coastal and Shelf Science", Vol 80, 243-250. https://doi.org/10.1016/j.ecss.2008.08.003
  22. Warwick, R.M., Ashman, C.M., Brown, A.R., Clarke, K.R., Dowell, B., Hart, B., Lewis, R.E., Shillabeer, N., Somerfield, P. J. and Tapp, J.F. 2002, "Inter-annual changes in the biodiversity and community structure of the macrobenthos in Tees Bay and the Tees estuary, UK, associated with local and regional environmental events. Marine Ecology Progress Series", Vol 234, 1-13. https://doi.org/10.3354/meps234001
  23. Yokoyama, H. and Ishihi, Y. 2003, "Feeding of the bivalve theora lubrica on benthic microalgae: isotopic evidence. Mar. Ecol. Prog. Ser.", Vol 255, 303-309. https://doi.org/10.3354/meps255303