• Title/Summary/Keyword: thunderstorms

Search Result 34, Processing Time 0.023 seconds

Protection for Telecommunications Equipment from Lightning -to Provide service with Higher Reliability - (낙뢰로부터 통신장치를 보호하는 방법 -보다 고신뢰 서비스 제공을 위하여 -)

  • 조규심
    • Journal of the Korean Professional Engineers Association
    • /
    • v.29 no.3
    • /
    • pp.87-93
    • /
    • 1996
  • Lightening is a phenomenon in which electric charges accumulated in the air due to a strong ascending air current are instantly discharged. As the air current rises, the steam in the air turns into hail and grows to a certain size. Thunderclouds brought together by the ascending air current when the earth's surface is heated by strong summer sunlight produce what are called heat thunderstorms. Compared to transistors and IC's that operate at several volts, lightening induces voltages of from several 100 to several 10,000 volts and sometimes causes great damage, such as destroying equipment or delaying communication. The following describes the cause of lighting damage and basic idea behind countermeasures against such damage.

  • PDF

The physical simulation of thunderstorm downbursts using an impinging jet

  • McConville, A.C.;Sterling, M.;Baker, C.J.
    • Wind and Structures
    • /
    • v.12 no.2
    • /
    • pp.133-149
    • /
    • 2009
  • This paper outlines the results of a physical simulation (at a 1:700 - 1:1000 geometric scale) of a thunderstorm downburst. Three different methods are examined in order to generate the time dependent nature of a downburst: directly controlling the fans and via two different types of opening apertures. Similarities are shown to exist between each method, although the results obtained from one approach are favoured since they appear to be independent of the downdraft velocity. Significant run-to-run variations between each experiment are discovered and in general it is found beneficial to interpret the results in terms of 10 run ensemble averages. An attempt to simulate a translating downburst is also undertaken and the results are shown to compare favourably with full-scale data.

Assessing synoptic wind hazard in Australia utilising climate-simulated wind speeds

  • Sanabria, L.A.;Cechet, R.P.
    • Wind and Structures
    • /
    • v.15 no.2
    • /
    • pp.131-145
    • /
    • 2012
  • Severe wind is one of the major natural hazards in Australia. The component contributors to economic loss in Australia with regards to severe wind are tropical cyclones, thunderstorms and subtropical (synoptic) storms. Geoscience Australia's Risk and Impact Analysis Group (RIAG) is developing mathematical models to study a number of natural hazards including wind hazard. This paper discusses wind hazard under current and future climate conditions using RIAG's synoptic wind hazard model. This model can be used in non-cyclonic regions of Australia (Region A in the Australian-New Zealand Wind Loading Standard; AS/NZS 1170.2:2011) where the wind hazard is dominated by synoptic and thunderstorm gust winds.

Characteristics of Atmospheric Stability Index of Airmass thunderstorm day at Busan (부산지역 기단성 뇌우 발생일의 대기안정도지수 특성)

  • Jeon, Byung Il
    • Journal of Wetlands Research
    • /
    • v.5 no.1
    • /
    • pp.29-40
    • /
    • 2003
  • This study was performed to research the relation between airmass thunderstorm and stability index with 12 years meteorological data(1990~2001) at Busan. Also We used the analysed stability indices from University of Wyoming to consider airmass thunderstorm. The frequency of thunderstorm occurrence during 12 years was 156 days(annual mean 13days). The airmass thunderstorm frequency was 14 days, most of those occurrence were summertime(59%). And occurrence hour of airmass thunderstorm was distributed from 1300LST to 2100LST broadly. The highest forecast index for airmass thunderstorm at Busan was K index, the lowest forecast index was SWEAT index. The forecasting of thunderstorms is based primary on the concepts of conditional instability, convective instability, and forced lifting of air near the surface. Instability is a critical factor in severe weather development. Severe weather stability indices can be a useful tool when applied correctly to a given convective weather situation.

  • PDF

Classification of Atmospheric Vertical Environment Associated with Heavy Rainfall using Long-Term Radiosonde Observational Data, 1997~2013 (장기간(1997~2013) 라디오존데 관측 자료를 활용한 집중호우 시 연직대기환경 유형 분류)

  • Jung, Sueng-Pil;In, So-Ra;Kim, Hyun-Wook;Sim, JaeKwan;Han, Sang-Ok;Choi, Byoung-Choel
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.611-622
    • /
    • 2015
  • Heavy rainfall ($>30mm\;hr^{-1}$) over the Korean Peninsula is examined in order to understand thermo-dynamic characteristics of the atmosphere, using radiosonde observational data from seven upper-air observation stations during the last 17 years (1997~2013). A total of 82 heavy rainfall cases during the summer season (June-August) were selected for this study. The average values of thermo-dynamic indices of heavy rainfall events are Total Precipitable Water (TPW) = 60 mm, Convective Available Potential Energy (CAPE) = $850J\;kg^{-1}$, Convective Inhibition (CIN) = $15J\;kg^{-1}$, Storm Relative Helicity (SRH) = $160m^2s^{-2}$, and 0~3 km bulk wind shear = $5s^{-1}$. About 34% of the cases were associated with a Changma front; this pattern is more significant than other synoptic pressure patterns such as troughs (22%), migratory cyclones (15%), edges of high-pressure (12%), typhoons (11%), and low-pressure originating from Changma fronts (6%). The spatial distribution of thermo-dynamic conditions (CAPE and SRH) is similar to the range of thunderstorms over the United States, but extreme conditions (supercell thunderstorms and tornadoes) did not appear in the Korean Peninsula. Synoptic conditions, vertical buoyancy (CAPE, CIN), and wind parameters (SRH, shear) are shown to discriminate among the environments of the three types. The first type occurred with high CAPE and low wind shear by the edge of the high pressure pattern, but Second type is related to Changma front and typhoon, exhibiting low CAPE and high wind shear. The last type exhibited characteristics intermediate between the first and second types, such as moderate CAPE and wind shear near the migratory cyclone and trough.

GROUND OBSERVATIONS OF SPRITES AND OTHER TLES IN TAIWAN

  • WANG YUN-CHING;HSU RUE-RON;SU HAN-TZONG;CHEN ALFRED BING-CHIH;LEE YI-JEN;KUO CHENG-LING;TSAY WEAN-SHUN;CHANG CHAN-KAO;WANG SHI-CHUN;LEE LOU-CHUANG;LIU TIE-YUE
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.299-302
    • /
    • 2005
  • Sprites, elves and blue jets are collectively denominated as the upper atmospheric transient luminous events (TLEs). They are recently discovered optical flashes between active thunderstorms and the ionosphere. In this report, a brief introduction to the most important characteristics of TLEs is given. Since 2001, scientists from the National Cheng Kung University have been performing yearly summer campaigns from various locations in Taiwan. The main achievements of their yearly campaign are presented.

Characteristics of the surface ozone concentration on the occurrence of air mass thunderstorm (기단성 뇌우 발생시 지표오존농도의 변화 특성)

  • 전병일
    • Journal of Environmental Science International
    • /
    • v.12 no.4
    • /
    • pp.419-426
    • /
    • 2003
  • This study was performed to research ozone concentration related to airmass thunderstorm using 12 years meteorological data(1990~2001) at Busan. The occurrence frequency of thunderstorm during 12 years was 156 days(annual mean 13days). The airmass thunderstorm frequency was 14 days, most of those occurrence at summertime(59%). In case August 4, 1996, increase of ozone concentration was simultaneous with the decrease of temperature and increase of relative humidity, In case July 23, 1997, ozone concentration of western site at Busan increased, while its of eastern site decreased as airmass thunderstorm occurred(about 1500LST). It is supposed that these ozone increases are the effect of ozone rich air that is brought down by cumulus downdrafts from height levels where the ozone mixing ratio is larger. Thunderstorms can cause downward transport of ozone from the reservoir layer in the upper troposphere into planeta교 boundary layer(PBL). This complex interaction of source and sink processes can result in large variability fer vertical and horizontal ozone distributions. Thus a variety of meteorological precesses can act to enhance vertical mixing between the earth's surface and the atmospheric in the manner described fer thunderstorm.

A study on efficient operation of DC track circuit (DC 궤도회로의 효율적인 운용방법에 대한 연구)

  • Jang, Dongwan;Jeon, Taehyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.2
    • /
    • pp.70-75
    • /
    • 2014
  • A track circuit is a critical piece of equipment that allows the existence of the trains on the track to be detected. Train detection is very important for the signal safety equipment. It allows for the confirmation of a train's location, the locking of switch points, the coordination of safe distance between trains, and the advance notice of a train's arrival. Track circuits can be powered by AC or DC. The DC track circuits are usually used on non-electrified tracks. On these tracks, many signal errors can be caused by lightning or problems with the power source. These problems can also cause damages to the rectifiers which must be repaired or replaced, promptly. This issue is especially problematic in the summer because of the higher frequency of thunderstorms. Issues with track circuits also cause problems for other equipment, such as railroad crossings and switch points. This further disrupts the safe operation of trains. This study aims to enhance maintenance efficiency and improve safety by utilizing parallel operation and multiplexing of a DC track circuit as well as installing an external surge protector. The experimental results on the operation of the proposed method is also presented.

Mesoscale Features and Forecasting Guidance of Heavy Rain Types over the Korean Peninsula (한반도 호우유형의 중규모 특성 및 예보 가이던스)

  • Kim, Sunyoung;Song, Hwan-Jin;Lee, Hyesook
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.463-480
    • /
    • 2019
  • This study classified heavy rain types from K-means clustering for the hourly relationship between rainfall intensity and cloud top height over the Korean peninsula, and then examined their statistical characteristics for the period of June~August 2013~2018. Total rainfall amount of warm-type events was 2.65 times larger than that of the cold-type, whereas the lightning frequency divided by total rainfall for the warm-type was only 46% of the cold-type. Typical cold-type cases exhibited high cloud top height around 16 km, large reflectivity in the upper layer, and frequent lightning flashes under convectively unstable condition. Phenomenally, the cold-type cases corresponded to cloud cluster or multi-cell thunderstorms. However, two warm-type cases related to Changma and typhoon were characterized by heavy rainfall due to long duration, relatively low cloud top height and upper-level reflectivity, and the absence of lightning under the convectively neutral and extremely humid conditions. This study further confirmed that the forecast skill of rainfall could be improved by applying correction factor with the overestimation for cold-type and underestimation for warm-type cases in the Local Data Assimilation and Prediction System (LDAPS) operational model (e.g., BIAS score was improved by 5%).

The Study on the Frontal Thunderstorm during Winter Time in the Korean Peninsula (우리나라 동계 전선성 뇌우에 관한 연구)

  • Kim, Jong-Seok;Park, Sang Hwan;Ham, Sook Jung;Ban, Ki-Song;Choi, Young Jean;Chang, Dong-Eon;Chung, Hyo-Sang
    • Atmosphere
    • /
    • v.16 no.4
    • /
    • pp.351-358
    • /
    • 2006
  • The structure of frontal thunderstorm in winter time is different from that of in summer time over the Korean peninsula, due to dry tongue and upward motion. The dry tongue, that is propagation of dry zone from upper level to lower level, was formed after front passage and the upward motion is intensified by the strengthened low level jet. Since this mechanism makes the structure more unstable, thunderstorm occurs at relatively low cloud top height. This study suggests a forecast guidance of winter time frontal thunderstorm that thunderstorms develop when one of the following conditions are satisfied: 1) total totals (TT) >40, 2) K index >-10, 3) mixing ratio ${\geq}$ 3.5 g/kg.