Journal of the Korea Institute of Information and Communication Engineering
/
v.18
no.1
/
pp.57-62
/
2014
The benefits of infrastructure support are shown by analyzing a throughput scaling law of an erasure network in which multiple relay stations (RSs) are regularly placed. Based on suitably modeling erasure probabilities under the assumed network, we show our achievable network throughput in the hybrid erasure network. More specifically, we use two types of physical models, a exponential decay model and a polynomial decay model. Then, we analyze our achievable throughput using two existing schemes including multi-hop transmissions with and without help of RSs. Our result indicates that for both physical models, the derived throughput scaling law depends on the number of nodes and the number of RSs.
Journal of the Korea Institute of Information and Communication Engineering
/
v.20
no.5
/
pp.911-916
/
2016
The nearest-neighbor multihop routing with/without infrastructure support is known to achieve the optimal capacity scaling in a large packet-erasure network in which multiple wireless nodes and relay stations are regularly placed and packets are erased with a certain probability. In this paper, a throughput scaling law is shown for an infrastructure-supported erasure network where wireless nodes are randomly distributed, which is a more feasible scenario. We use an exponential decay model to suitably model an erasure probability. To achieve high throughput in hybrid random erasure networks, the multihop routing via highway using the percolation theory is proposed and the corresponding throughput scaling is derived. As a main result, the proposed percolation highway based routing scheme achieves the same throughput scaling as the nearest-neighbor multihop case in hybrid regular erasure networks. That is, it is shown that no performance loss occurs even when nodes are randomly distributed.
Journal of the Korea Institute of Information and Communication Engineering
/
v.18
no.2
/
pp.303-310
/
2014
We show improved throughput scaling laws for an ultra-wide band (UWB) ad hoc network, in which n wireless nodes are randomly located. First, we consider the case where a modified hierarchical cooperation (HC) strategy is used. Then, in a dense network of unit area, our result indicates that the derived throughput scaling depends on the path-loss exponent ${\alpha}$ for certain operating regimes due to the power-limited characteristics. It also turns out that the HC protocol is dominant for 2 < ${\alpha}$ < 3 while using the nearest multihop (MH) routing leads to a higher throughput for ${\alpha}{\geq}3$. Second, the impact and benefits of infrastructure support are analyzed, where m base stations (BSs) are regularly placed in UWB networks. In this case, the derived throughput scaling depends on ${\alpha}$ due to the power-limited characteristics for all operating regimes. Furthermore, it is shown that the total throughput scales linearly with parameter m as m is larger than a certain level. Hence, the use of either HC or infrastructure is helpful in improving the throughput of UWB networks in some conditions.
Due to the difficulty of coordination in the cellular uplink, it is a practical challenge how to achieve the optimal throughput scaling with distributed scheduling. In this paper, we propose a distributed and opportunistic user scheduling (DOUS) that achieves the optimal throughput scaling in a single-input multiple-output interfering multiple-access channel, i.e., a multi-cell uplink network, with M antennas at each base station (BS) and N users in a cell. In a distributed fashion, each BS adopts M random receive beamforming vectors and then selects M users such that both sufficiently large desired signal power and sufficiently small generating interference are guaranteed. As a main result, it is proved that full multiuser diversity gain can be achieved in each cell when a sufficiently large number of users exist. Numerical evaluation confirms that in a practical setting of the multi-cell network, the proposed DOUS outperforms the existing distributed user scheduling algorithms in terms of sum-rate.
Wei, Zhiqing;Feng, Zhiyong;Zhang, Qixun;Li, Wei;Gulliver, T. Aaron
Journal of Communications and Networks
/
v.16
no.2
/
pp.227-237
/
2014
Throughput scaling laws for two coexisting ad hoc networks with m primary users (PUs) and n secondary users (SUs) randomly distributed in an unit area have been widely studied. Early work showed that the secondary network performs as well as stand-alone networks, namely, the per-node throughput of the secondary networks is ${\Theta}(1/\sqrt{n{\log}n})$. In this paper, we show that by exploiting directional spectrum opportunities in secondary network, the throughput of secondary network can be improved. If the beamwidth of secondary transmitter (TX)'s main lobe is ${\delta}=o(1/{\log}n)$, SUs can achieve a per-node throughput of ${\Theta}(1/\sqrt{n{\log}n})$ for directional transmission and omni reception (DTOR), which is ${\Theta}({\log}n)$ times higher than the throughput with-out directional transmission. On the contrary, if ${\delta}={\omega}(1/{\log}n)$, the throughput gain of SUs is $2{\pi}/{\delta}$ for DTOR compared with the throughput without directional antennas. Similarly, we have derived the throughput for other cases of directional transmission. The connectivity is another critical metric to evaluate the performance of random ad hoc networks. The relation between the number of SUs n and the number of PUs m is assumed to be $n=m^{\beta}$. We show that with the HDP-VDP routing scheme, which is widely employed in the analysis of throughput scaling laws of ad hoc networks, the connectivity of a single SU can be guaranteed when ${\beta}$ > 1, and the connectivity of a single secondary path can be guaranteed when ${\beta}$ > 2. While circumventing routing can improve the connectivity of cognitive radio ad hoc network, we verify that the connectivity of a single SU as well as a single secondary path can be guaranteed when ${\beta}$ > 1. Thus, to achieve the connectivity of secondary networks, the density of SUs should be (asymptotically) bigger than that of PUs.
Wang, Yufeng;Erturk, Mustafa Cenk;Liu, Jinxing;Ra, In-ho;Sankar, Ravi;Morgera, Salvatore
Journal of Communications and Networks
/
v.17
no.1
/
pp.58-66
/
2015
Aeronautical communication networks (ACN) is an emerging concept in which aeronautical stations (AS) are considered as a part of multi-tier network for the future wireless communication system. An AS could be a commercial plane, helicopter, or any other low orbit station, i.e., Unmanned air vehicle, high altitude platform. The goal of ACN is to provide high throughput and cost effective communication network for aeronautical applications (i.e., Air traffic control (ATC), air traffic management (ATM) communications, and commercial in-flight Internet activities), and terrestrial networks by using aeronautical platforms as a backbone. In this paper, we investigate the issues about connectivity, throughput, and delay in ACN. First, topology of ACN is presented as a simple mobile ad hoc network and connectivity analysis is provided. Then, by using information obtained from connectivity analysis, we investigate two communication models, i.e., single-hop and two-hop, in which each source AS is communicating with its destination AS with or without the help of intermediate relay AS, respectively. In our throughput analysis, we use the method of finding the maximum number of concurrent successful transmissions to derive ACN throughput upper bounds for the two communication models. We conclude that the two-hop model achieves greater throughput scaling than the single-hop model for ACN and multi-hop models cannot achieve better throughput scaling than two-hop model. Furthermore, since delay issue is more salient in two-hop communication, we characterize the delay performance and derive the closed-form average end-to-end delay for the two-hop model. Finally, computer simulations are performed and it is shown that ACN is robust in terms of throughput and delay performances.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.6
no.12
/
pp.3237-3256
/
2012
In the context of effective usage of a scarce spectrum resource, emerging wireless communication standards will demand spectrum sharing with existing systems as well as multiple access with higher spectral efficiency. We mathematically analyze the sum throughput of a spectrum sharing space-division multiple access (SDMA) system, which forms a transmit null in the direction of other coexisting systems while satisfying orthogonal beamforming constraints. For a large number of users N, the SDMA throughput scales as log N at high signal-to-noise ratio (SNR) ((J-1) loglog N at normal SNR), where J is the number of transmit antennas. This indicates that multiplexing gain of the spectrum sharing SDMA is $\frac{J-1}{J}$ times less than that of the non-spectrum sharing SDMA only using orthogonal beamforming, whereas no loss in multiuser diversity gain. Although the spectrum sharing SDMA always has lower throughput compared to the non-spectrum sharing SDMA in the non-coexistence scenario, it offers an intriguing opportunity to reuse spectrum already allocated to other coexisting systems.
A novel method using scaling down and restoration to reduce the PAPR of OFDM signal is proposed. This method shows a better BER performance than clipping method. And also the throughput efficiency is better than SLM.
The issues were studied of an open-source scaling drone imagery platform, called WebODM. It is known that processing drone images has a high demand for resources because of many preprocessing and post-processing steps involved in image loading, orthophoto, georeferencing, texturing, meshing, and other procedures. By default, WebODM allocates one node for processing. We explored methods to expand the platform's capability to handle many processing requests, which should be beneficial to platform designers. Our primary objective was to enhance WebODM's performance to support concurrent users through the use of container technology. We modified the original process to scale the task vertically and horizontally utilizing the Kubernetes cluster. The effectiveness of the scaling approaches enabled handling more concurrent users. The response time per active thread and the number of responses per second were measured. Compared to the original WebODM, our modified version sometimes had a longer response time by 1.9%. Nonetheless, the processing throughput was improved by up to 101% over the original WebODM's with some differences in the drone image processing results. Finally, we discussed the integration with the infrastructure as code to automate the scaling is discussed.
This paper formulates a problem of embedded real-time system re-engineering, and presents its solution approach. Embedded system re-engineering is defined as a development task of meeting performance requirements newly imposed on a system after its hardware and software have been fully implemented. The performance requirements nay include a real-time throughput and an input-to-output latency. The proposed solution approach is based on a bottleneck analysis and nonlinear optimization. The inputs to the approach include a system design specified with a process network and a set of task graphs, task allocation and scheduling, and a new real-time throughput requirement specified as a system's period constraint. The solution approach works in two steps. In the first step, it determines bottleneck precesses in the process network via estimation of process latencies. In the second step, it derives a system of constraints with performance scaling factors of processing elements being variables. It then solves the constraints for the performance staling factors with an objective of minimizing the total hardware cost of the resultant system. These scaling factors suggest the minimal cost hardware upgrade to meet the new performance requirement. Since this approach does not modify carefully designed software structures, it helps reduce the re-engineering cycle.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.