• 제목/요약/키워드: through-the-thickness circular hole

검색결과 11건 처리시간 0.037초

Stress concentrations around a circular hole in an infinite plate of arbitrary thickness

  • Dai, Longchao;Wang, Xinwei;Liu, Feng
    • Structural Engineering and Mechanics
    • /
    • 제34권2호
    • /
    • pp.143-157
    • /
    • 2010
  • This paper presents theoretical solutions for the three-dimensional (3D) stress field in an infinite isotropic elastic plate containing a through-the-thickness circular hole subjected to far-field in-plane loads by using Kane and Mindlin's assumption. The dangerous position, where the premature fracture or failure of the plate will take place, the expressions of the tangential stress at the surface of the hole and the out-of-plane stress constraint factor are found in a concise, explicit form. Based on the present theoretical solutions, a comprehensive analysis is performed on the deviated degree of the in-plane stresses from the related plane stress solutions, stress concentration and out-of-plane constraint, and the emphasis has been placed on the effects of the plate thickness, Poisson's ratio and the far-field in-plane loads on the stress field. The analytical solution shows that the effects of the plate thickness and Poisson's ratio on the deviation of the 3D in-plane stress components is obvious and could not be ignored, although their effects on distributions of the in-plane stress components are slight, and that the effect of the far-field in-plane loads is just on the contrary of that of the above two. When only the shear stress is loaded at far field, the stress concentration factor reach its peak value about 8.9% higher than that of the plane stress solutions, and the out-of-plane stress constraint factor can reach 1 at the surface of the hole and is the biggest among all cases considered.

핀이 부착된 금속곡관 제품의 열간압출 굽힘가공에 관한 연구 (A Study on the Bending Process for the Circular Curved Tube and Rectangular Curved Tube with Fins)

  • 김민규;박중원;진인태
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.204-207
    • /
    • 2001
  • The bending process for the circular curved tube and rectangular curved tube with fins can be developed by the hot metal extrusion machine with the multiple punches moving in the different velocity. The bending phenomenon can be controlled by the two variables. The one of them is the difference of velocity at the die exit section by the different velocity of billets through the multi-hole container. The other is the one by the different hole diameter. The results of the experiment show that the circular curved tube with fins and rectangular curved tube with pins can be formed by the extrusion process and that the curveture of the product can be controlled by the velocity of punch and diameter of container hole and that the defects such as the distortion of section and the thickness change of the wall of tube the folding and wrinkling of thin tube and fins did not happen after the bending processing by the extrusion bending machine.

  • PDF

열간금속 압출굽힘기를 이용한 금속곡관의 압출굽힘가공에 관한 연구 (A Study on Extru-Bending Process Extrusion Bending Machine)

  • 박대윤;진인태
    • 소성∙가공
    • /
    • 제11권3호
    • /
    • pp.262-268
    • /
    • 2002
  • The bending process for the rectangular and circular curled tube can be developed by the hot metal extrusion machine with the multiple punches moving in the different velocity. The bending phenomenon has been known to be occurred by the different of velocity at the die exit. The difference of velocity at the die exit section can be obtained by the different velocity of billets through the multi-hole container and by the cohesion of billet Inside the porthole die chamber. The bending phenomenon can be controlled by the two variables, the one of them is the difference of velocity at the die edit section by the different velocity of billets through the multi-hole container The other is the difference by the different hole diameter The results of the experiment show that the rectangular curved tube can be formed by the extrusion process, that the curvature of the curved product can be controlled by the velocity of punch and the diameter of container hole, that the defects such as the distortion of section and the thickness change of the wall of tube and the folding and wrinkling of thin tube did not happen after the extra-bending processing by the extrusion bending machine.

원형 또는 사각 단면을 가지는 알루미늄 곡관 튜브제품의 열간금속압출굽힘가공 (Hot Metal Extru-Bending Process for Curved Aluminum Tube Products with Circular or Rectangular Sections)

  • 박대윤;진인태
    • 소성∙가공
    • /
    • 제13권8호
    • /
    • pp.663-670
    • /
    • 2004
  • The bending phenomenon has been known to be occurred by the difference of velocity at the die exit. The difference of velocity at the die exit section can be obtained by the different velocity of billets through the multi-hole container. The difference of velocity at the die exit can be controlled by the two variables, the one of them is the different velocity of extrusion punch through the multi-hole container, the other is the difference of hole diameter of muliti-hole container. In this paper the difference of hole diameter is applied. So it can bend during extruding products because of the different amount of two billets when billets would be bonded in the porthole dies cavity. And the bending curvature can be controlled by the size of holes. The experiments with aluminum material for the curved tube product had been done for circular or rectangular curved tube section. The results of the experiments show that the curved tube product can be formed by the extru-bending process without the defects such as distortion of section and thickness change of wall of tube and folding and wrinkling. The curvature of product can be controlled by shape of cross section and the difference of billet diameters. And it is known that the bonding and extruding and bending process can be done simultaneously in the die cavity by the experiments that rectangular hollow curved tubes could be extruded by porthole dies with four different size billets made of aluminum material. And it shows that bending phenomenon can happen during extruding with for different billets from the analysis by DEFORM-3D.

고강도 강연선용 앵커헤드의 형상변화에 따른 비선형 거동특성 분석 (Nonlinear Analysis of Anchor Head for High Strength Steel Strand)

  • 노명현;성택룡;김진국
    • 한국전산구조공학회논문집
    • /
    • 제25권2호
    • /
    • pp.163-173
    • /
    • 2012
  • 이 연구에서는 프리스트레싱용 고강도 강연선의 정착장치 중 강연선을 직접 정착하는 앵커헤드(anchor head)에 대해 거동특성을 분석하고, 앵커헤드의 제원을 결정하는 단계에 있어서 해석적 검토에 요구되는 프로세스에 대해 정립하였다. 앵커헤드는 쐐기와의 접촉(contact)을 통해 강연선으로부터의 힘이 전달되고 거동변화에 따라 접촉상태 또한 변하게 된다. 이를 고려한 상세 거동분석을 위해 쐐기와 헤드 사이의 접촉(contact)조건을 설정하였으며, 앵커헤드의 비선형 재료모델을 적용하여 기하 및 재료 비선형성을 고려한 구조해석을 수행하였다. 해석결과로부터 다음의 결과를 얻을 수 있었다. 앵커헤드의 거동은 앵커헤드와 쐐기 간의 상호거동에 크게 영향을 받기 때문에 초기 설계단계부터 상대 영향을 고려해야 한다. 쐐기홀(wedge hole)의 배치는 층배열(layered) 보다는 원형배열(circular)이 보다 응력분배에 효과적이고, 쐐기홀의 간격을 증가시키고 헤드 하면 구멍의 크기를 줄여 구멍사이 강재의 두께를 다소 늘이는 것이 구조거동에 효과적이다.

Finite-element analysis and design of aluminum alloy RHSs and SHSs with through-openings in bending

  • Ran Feng;Tao Yang;Zhenming Chen;Krishanu Roy;Boshan Chen;James B.P. Lim
    • Steel and Composite Structures
    • /
    • 제46권3호
    • /
    • pp.353-366
    • /
    • 2023
  • This paper presents a finite-element analysis (FEA) of aluminum alloy rectangular hollow sections (RHSs) and square hollow sections (SHSs) with circular through-openings under three-point and four-point bending. First, a finite-element model (FEM) was developed and validated against the corresponding test results available in the literature. Next, using the validated FE models, a parametric study comprising 180 FE models was conducted. The cross-section width-to-thickness ratio (b/t) ranged from 2 to 5, the hole size ratio (d/h) ranged from 0.2 to 0.8 and the quantity of holes (n) ranged from 2 to 6, respectively. Third, results obtained from laboratory test and FEA were compared with current design strengths calculated in accordance with the North American Specifications (NAS), the modified direct strength method (DSM) and the modified Continuous strength method (CSM). The comparison shows that the modified CSM are conservative by 15% on average for aluminum alloy RHSs and SHSs with circular through-openings subject to bending. Finally, a new design equation is proposed based on the modified CSM after being validated with results obtained from laboratory test and FEA. The proposed design equation can provide accurate predictions of flexural capacities for aluminum alloy RHSs and SHSs with circular through-openings.

원통이 붙은 평판의 응력집중완화에 대한 연구 (A Study on the Reducing of the Stress Concentration Near a Circular Hole in a Flat Plate Attached to a Cylinder)

  • 정인승
    • 한국정밀공학회지
    • /
    • 제11권5호
    • /
    • pp.98-109
    • /
    • 1994
  • This paper is studied on the junction stress of the large tank and the cylindrical outlet such as a pressure vessel attached to a pope or nozzle theoretically. It is assumed that the diameter of tank is much larger than that of the nozzle cylinder, so it can be approximated that nozzle cylinder is attached to plate. As the current nozzle shape is manufactured as "Through Type" to reduce the stress concentration around the nozzle junction part of pressure vessel, a theoretical analysis on the cylinder with finite length should be performed to accomodate this fact. Each theoretical optimal values were obtained through the analysis of stress concentration caused by the variation of cylinder length and thickness, and these results were estimated by performing FEM Analysis. Analysis.

  • PDF

Numerical nonlinear bending analysis of FG-GPLRC plates with arbitrary shape including cutout

  • Reza, Ansari;Ramtin, Hassani;Yousef, Gholami;Hessam, Rouhi
    • Structural Engineering and Mechanics
    • /
    • 제85권2호
    • /
    • pp.147-161
    • /
    • 2023
  • Based on the ideas of variational differential quadrature (VDQ) and finite element method (FEM), a numerical approach named as VDQFEM is applied herein to study the large deformations of plate-type structures under static loading with arbitrary shape hole made of functionally graded graphene platelet-reinforced composite (FG-GPLRC) in the context of higher-order shear deformation theory (HSDT). The material properties of composite are approximated based upon the modified Halpin-Tsai model and rule of mixture. Furthermore, various FG distribution patterns are considered along the thickness direction of plate for GPLs. Using novel vector/matrix relations, the governing equations are derived through a variational approach. The matricized formulation can be efficiently employed in the coding process of numerical methods. In VDQFEM, the space domain of structure is first transformed into a number of finite elements. Then, the VDQ discretization technique is implemented within each element. As the last step, the assemblage procedure is performed to derive the set of governing equations which is solved via the pseudo arc-length continuation algorithm. Also, since HSDT is used herein, the mixed formulation approach is proposed to accommodate the continuity of first-order derivatives on the common boundaries of elements. Rectangular and circular plates under various boundary conditions with circular/rectangular/elliptical cutout are selected to generate the numerical results. In the numerical examples, the effects of geometrical properties and reinforcement with GPL on the nonlinear maximum deflection-transverse load amplitude curve are studied.

圓筒이 붙은 平板의 應力解析 (Stress Analysis near a Circular Hole in a Flat Plate Attached to a Cyinder -The Key Subject is the Change of the Cylindrical Shell-Length-)

  • 정인승;이대희;윤갑영
    • 대한기계학회논문집
    • /
    • 제10권5호
    • /
    • pp.770-778
    • /
    • 1986
  • This paper is studied on the Junctiion of the large tank and the cylinderical outlet such as a pressure vessel attached a pipe or nozzle theoretically. It is assumed that the diameter of tank is much larger than that of the nozzle, so it can be approximated that nozzle is attached to plate. The analysis procedure can be viewed as the solution of interdependent subproblems: (a) the stress analysis of the cylinderical shell(nozzle), (b) the plane-stress analysis of the plate membrane problem, and (c) the analysis of the transverse bending deformation in the plate. On the procedure of (a), the Flugge formula are used, and the variables are the length and the ratio of the thickness to the radius of cylinderical shell. The solutions of thess problems are interrelated in the total solution through continuity and equilibrium conditions at the interface of middle planes of the plate and cylinderical shell.

원통으로 보강된 평판의 응력해석 (Stress analysis near a circular hole in a flat plate reinforced by a cylinder)

  • 정인승;이대희;이완익;윤갑영
    • 대한기계학회논문집
    • /
    • 제11권5호
    • /
    • pp.800-809
    • /
    • 1987
  • 본 연구에서는 원통에 대하여는 Donnel 식과 Flugge식을 사용하여 원통의 유 한길이에 대한 일반적인 해를 구하였고, 평판에 대하여는 막이론과 굽힘이론을 사용하 여 일반해를 구한 후 중첩하였다. 평판과 원통에 발생하는 미정력계를 구하기 위하 여 가장 합리적이라고 생각되는 접합부에 모든 미정력계가 집중하여 작용한다고 가정 하고, 이 부분에서 평판과 원통의 각각에 대한 하중, 모우멘트, 기울기, 변위 등이 연 속하도록 접한조건식을 세웠다.그리고 이론해석의 타당성을 알아보기 위하여 S 45C 강재로 플러시타잎의 모델을 제작하여 실험을 행하였다.