• Title/Summary/Keyword: threshold energy

Search Result 682, Processing Time 0.026 seconds

Pollution and Ecological Risk Assessment of Trace Metals in Surface Sediments of the Ulsan-Onsan Coast (울산-온산연안 표층퇴적물 내 미량금속 오염도 및 생태위해성 평가)

  • Sun, Chul-In;Kim, Dong-Jae;Lee, Yong-Woo;Kim, Seong-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.4
    • /
    • pp.245-253
    • /
    • 2015
  • Total acid digestion and 1 M HCl extraction methods were used to investigate the pollution status and the degree of ecological risk of trace metals in surface sediments from the Ulsan-Onsan coast. Total concentrations of trace metals (Cu, Cd, Pb, Zn, and Hg) were two-fold higher in surface sediments from Onsan coast than in those from Ulsan coast. The mean labile fractions of the total concentrations of Cd and Pb were 72% and 78%, respectively, indicating a high contribution from anthropogenic sources, whereas Cr, Li, Ni, and As in the residual fraction exceeded 80%, indicating a high contribution from natural sources. According to the results of assessment of trace metal pollution using the sediment quality guidelines in Korea, the concentrations of Cu, Pb, Zn, and Hg were higher than the values of the probable effects level (PEL) at some stations of Onsan coast, and the concentrations of Cr and Ni were lower than the values of the threshold effects level (TEL). The pollution level and ecological risk of the trace metals were analyzed using various indexes (EF, $I_{geo}$, m-PEL-Q, and ERI). Our results showed that the degree of pollution by trace metals (Cu, Cd, Pb, Zn, and Hg) on the Ulsan-Onsan coast was high, and Hg and Cd were the major potential ecological risk factors.

An Analysis of Statistical Characteristics of Nonlinear Ocean Waves (비선형 해양파의 통계적 특성에 대한 해석)

  • Kim, Do-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.2
    • /
    • pp.112-120
    • /
    • 2010
  • In this paper time series wave data measured continuously for 24 hours during a storm in Yura Sea Area are used to investigate statistical characteristics of nonlinear waves. The exceedance probability of wave height is compared using the Rayleigh distribution and the Edgeworth-Rayleigh (ER) distribution. Wave data which show stationary state for 10 hours contain 4600 waves approximately. The Gram-Chalier distribution fits the probability of wave elevation better than the Gaussian distribution. The Rayleigh ($H_{rms}$) distribution follows the exceedance probability of wave height in general and predicts the probability of freak waves well. The ER distribution overpredicts the exceedance probability of wave heights and the occurrence of freak waves. If wave data measured for 30 minute period which contains 250 waves are used, the ER distribution can predict the occurrence probability of freak waves well. But it overpredicts the probability of overall wave height If no freak wave occurs, the Rayleigh ($H_{rms}$) distribution agrees well with wave height distribution for the most of wave height ranges. The wave height distribution of freak waves of which height are less than 10 m shows similar tendency compared with freak waves greater than 10 m. The value of $H_{max}/H_{1/3}$ is related to the kurtosis of wave elevation. It seems that there exists threshold value of the kurtosis for the occurrence of freak waves.

Low-power Lattice Wave Digital Filter Design Using CPL (CPL을 이용한 저전력 격자 웨이브 디지털 필터의 설계)

  • 김대연;이영중;정진균;정항근
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.10
    • /
    • pp.39-50
    • /
    • 1998
  • Wide-band sharp-transition filters are widely used in applications such as wireless CODEC design or medical systems. Since these filters suffer from large sensitivity and roundoff noise, large word-length is required for the VLSI implementation, which increases the hardware size and the power consumption of the chip. In this paper, a low-power implementation technique for digital filters with wide-band sharp-transition characteristics is proposed using CPL (Complementary Pass-Transistor Logic), LWDF (Lattice Wave Digital Filter) and a modified DIFIR (Decomposed & Interpolated FIR) algorithm. To reduce the short-circuit current component in CPL circuits due to threshold voltage reduction through the pass transistor, three different approaches can be used: cross-coupled PMOS latch, PMOS body biasing and weak PMOS latch. Of the three, the cross-coupled PMOS latch approach is the most realistic solution when the noise margin as well as the energy-delay product is considered. To optimize CPL transistor size with insight, the empirical formulas for the delay and energy consumption in the basic structure of CPL circuits were derived from the simulation results. In addition, the filter coefficients are encoded using CSD (Canonic Signed Digit) format and optimized by a coefficient quantization program. The hardware cost is minimized further by a modified DIFIR algorithm. Simulation result shows that the proposed method can achieve about 38% reductions in power consumption compared with the conventional method.

  • PDF

Performance enhancement of Organic Thin Film Transistor using $C_{60}$ hole injection layer ($C_{60}$(buckminsterfullurene) 홀주입층을 적용한 유기박막트랜지스터의 성능향상)

  • Yi, Moon-Suk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.5
    • /
    • pp.19-25
    • /
    • 2008
  • In this study, we fabricated Organic Thin Film Transistors(OTFTs) with $C_{60}$ hole injection layer between organic semiconductor(pentacene) and metal electrode, and we compared the electrical characteristics of OTFTs with/without $C_{60}$. When the $C_{60}$ hole injection layer was introduced, the mobility and the threshold voltage were improved from 0.298 $cm^2/V{\cdot}s$ and -13.3V to 0.452 $cm^2/V{\cdot}s$ and -10.8V, and the contact resistance was also reduced. When the $C_{60}$ is inserted, the hole injection was enhanced because the $C_{60}$ prevent the unwanted chemical reaction between pentacene and Au. Furthermore, we fabricated the OTFTs using Al as their electrodes. When the OTFTs were made by only aluminum electrode, the channel were not mostly made because of the high hole injection barrier between pentacene and aluminum, but when the $C_{60}$ layer with an optimal thickness was applied between aluminum and pentacene, the device performances were obviously enhanced because of the vacuum energy level shift of Al and the consequent decrease of the hole injection barrier which was induced by the interface dipole formation between $C_{60}$ and Al. The mobility and $I_{ON}/I_{OFF}$ current ratio of OTFT with $C_{60}/Al$ electrode were 0.165 $cm^2/V{\cdot}s$ and $1.4{\times}10^4$ which were comparable with the normal Au electrode OTFT.

Estimation of THI Index to Evaluate Thermal Stress of Piglets in Summer Season (하절기 자돈 고온 스트레스 평가를 위한 THI 지수 모의)

  • Ha, Taehwan;Kwon, Kyeong-seok;Lee, In-bok;Kim, Rack-woo;Yeo, Uk-hyeon;Lee, Sangyeon;Choi, Hee-chul;Kim, Jong-bok;Lee, Jun-yeob;Jeon, Jung-hwan;Woo, Saemee;Yang, Ka-young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.4
    • /
    • pp.113-122
    • /
    • 2018
  • Thermal stress of pigs causes decreased feed consumption and weight gain rate, immunosuppression, reproductive disorders, and increased mortality. The concept of the temperature-humidity index (THI) has been widely used to evaluate the degree of thermal stress of pigs. However, use of this concept is strongly restricted for animals living in the enclosed facilities. In this study, Building Energy Simulation (BES) technique was used to realize the energy flow among outside weather conditions, building materials, and animals. Especially, mechanisms of sensible and latent heat generation from pigs according to surrounding air temperature and their weight were designed to accurately evaluate the THI values inside the pig house. The THI values computed by the BES model were compared to those calculated by method of the report (NIAS, 2016), the model of this study predicted the start date of heat stress about 9~76 days earlier compared to the NIAS model. Results of the BES model also showed higher frequencies of the THI above the THI threshold for pigs, indicating that conventional model has a possibility of underestimating the degree of heat stress of pigs.

Monitoring Anaerobic Reductive Dechlorination of TCE by Biofilm-Type Culture in Continuous-Flow System (연속흐름반응조에서 바이오필름형태의 탈염소화 미생물에 의한 TCE분해 모니터링)

  • Park, Sunhwa;Han, Kyungjin;Hong, Uijeon;Ahn, Hongil;Kim, Namhee;Kim, Hyunkoo;Kim, Taeseung;Kim, Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.5
    • /
    • pp.49-55
    • /
    • 2012
  • A 1.28 L-batch reactor and continuous-flow stirred tank reactor (CFSTR) fed with formate and trichloroethene (TCE) were operated for 120 days and 56 days, respectively, to study the effect of formate as electron donor on anaerobic reductive dechlorination (ARD) of TCE to cis-1,2-dichloroethylene (c-DCE), vinyl chloride (VC), and ethylene (ETH). In batch reactor, injected 60 ${\mu}mol$ TCE was completely degraded in the presence of 20% hydrogen gas ($H_2$) in less than 8 days by anaerobic dechlorination mixed-culture (300 mg-soluble protein), Evanite Culture with ability to completely degrade tetrachloroethene (PCE) and -TCE to ETH under anaerobic conditions. Once the formate was used as electron donor instead of hydrogen gas in batch or chemostat system, the TCE-dechlorination rate decreased and acetate production rate increased. It indicates that the concentration of hydrogen produced in both systems is possibly more close to threshold for homoacetogenesis process. Soluble protein concentration of Evanite culture during the batch test increased from 300 mg to 688 mg for 120 days. Through the protein monitoring, we confirmed an increase of microbial population during the reactor operation. In CFSTR test, TCE was fed continuously at 9.9 ppm (75.38 ${\mu}mol/L$) and the influent formate feed concentration increased stepwise from 1.3 mmol/L to 14.3 mmol/L. Injected TCE was accumulated at 18 days of HRT, but TCE was completely degraded at 36 days of HRT without accumulation of the injected-TCE during the left of experiment period, getting $H_2$ from fermentative hydrogen production of injected formate. Although c-DCE was also accumulated for 23 days after beginning of CFSTR operation, it reached steady-state in the presence of excessive formate. We also evaluated microbial dynamic of the culture at different chemical state in the reactor by DGGE (denaturing gradient gel electrophoresis).

CNN Based Spectrum Sensing Technique for Cognitive Radio Communications (인지 무선 통신을 위한 합성곱 신경망 기반 스펙트럼 센싱 기법)

  • Jung, Tae-Yun;Lee, Eui-Soo;Kim, Do-Kyoung;Oh, Ji-Myung;Noh, Woo-Young;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.2
    • /
    • pp.276-284
    • /
    • 2020
  • This paper proposes a new convolutional neural network (CNN) based spectrum sensing technique for cognitive radio communications. The proposed technique determines the existence of the primary user (PU) by using energy detection without any prior knowledge of the PU's signal. In the proposed method, the received signal is high-rate sampled to sense the entire spectrum bands of interest. After that, fast Fourier transform (FFT) of the signal converts the time domain signal to frequency domain spectrum and by stacking those consecutive spectrums, a 2 dimensional signal is made. The 2 dimensional signal is cut by the sensing channel bandwidth and inputted to the CNN. The CNN determines the existence of the primary user. Since there are only two states (existence or non-existence), binary classification CNN is used. The performance of the proposed method is examined through computer simulation and indoor experiment. According to the results, the proposed method outperforms the conventional threshold-based method by over 2 dB.

Electromagnetic Interference of GMDSS MF/HF Band by Offshore Wind Farm (해상풍력 발전단지에 의한 GMDSS MF/HF 대역 전자파 간섭 영향 연구)

  • Oh, Seongwon;Park, Tae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.47-52
    • /
    • 2021
  • Recently, the share of wind power in energy markets has sharply increased with the active development of renewable energy internationally. In particular, large-scale wind farms are being developed far from the coast to make use of abundant wind resources and to reduce noise pollution. In addition to the electromagnetic interference (EMI) caused by offshore wind farms to coastal or air surveillance radars, it is necessary to investigate the EMI on global maritime distress and safety system (GMDSS) communications between ship and coastal stations. For this purpose, this study investigates whether the transmitted field of MF/HF band from a ship would be subject to interference or attenuation below the threshold at a coastal receiver. First, using geographic information system digital maps and 3D CAD models of wind turbines, the area of interest is electromagnetically modeled with patch models. Although high frequency analysis methods like Physical Optics are appropriate to analyze wide areas compared to its wavelength, the high frequency analysis method is first verified with an accurate low frequency analysis method by simplifying the surrounding area and turbines. As a result, the received wave power is almost the same regardless of whether the wind farms are located between ships and coastal stations. From this result, although wind turbines are large structures, the size is only a few wavelengths, so it does not interfere with the electric field of MF/HF distress communications.

Heavy concrete shielding properties for carbon therapy

  • Jin-Long Wang;Jiade J Lu;Da-Jun Ding;Wen-Hua Jiang;Ya-Dong Li;Rui Qiu;Hui Zhang;Xiao-Zhong Wang;Huo-Sheng Ruan;Yan-Bing Teng;Xiao-Guang Wu;Yun Zheng;Zi-Hao Zhao;Kai-Zhong Liao;Huan-Cheng Mai;Xiao-Dong Wang;Ke Peng;Wei Wang;Zhan Tang;Zhao-Yan Yu;Zhen Wu;Hong-Hu Song;Shuo-Yang Wei;Sen-Lin Mao;Jun Xu;Jing Tao;Min-Qiang Zhang;Xi-Qiang Xue;Ming Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2335-2347
    • /
    • 2023
  • As medical facilities are usually built at urban areas, special concrete aggregates and evaluation methods are needed to optimize the design of concrete walls by balancing density, thickness, material composition, cost, and other factors. Carbon treatment rooms require a high radiation shielding requirement, as the neutron yield from carbon therapy is much higher than the neutron yield of protons. In this case study, the maximum carbon energy is 430 MeV/u and the maximum current is 0.27 nA from a hybrid particle therapy system. Hospital or facility construction should consider this requirement to design a special heavy concrete. In this work, magnetite is adopted as the major aggregate. Density is determined mainly by the major aggregate content of magnetite, and a heavy concrete test block was constructed for structural tests. The compressive strength is 35.7 MPa. The density ranges from 3.65 g/cm3 to 4.14 g/cm3, and the iron mass content ranges from 53.78% to 60.38% from the 12 cored sample measurements. It was found that there is a linear relationship between density and iron content, and mixing impurities should be the major reason leading to the nonuniform element and density distribution. The effect of this nonuniformity on radiation shielding properties for a carbon treatment room is investigated by three groups of Monte Carlo simulations. Higher density dominates to reduce shielding thickness. However, a higher content of high-Z elements will weaken the shielding strength, especially at a lower dose rate threshold and vice versa. The weakened side effect of a high iron content on the shielding property is obvious at 2.5 µSv=h. Therefore, we should not blindly pursue high Z content in engineering. If the thickness is constrained to 2 m, then the density can be reduced to 3.3 g/cm3, which will save cost by reducing the magnetite composition with 50.44% iron content. If a higher density of 3.9 g/cm3 with 57.65% iron content is selected for construction, then the thickness of the wall can be reduced to 174.2 cm, which will save space for equipment installation.

Background effect on the measurement of trace amount of uranium by thermal ionization mass spectrometry (열이온화 질량분석에 의한 극미량 우라늄 정량에 미치는 바탕값 영향)

  • Jeon, Young-Shin;Park, Yong-Joon;Joe, Kih-Soo;Han, Sun-Ho;Song, Kyu-Seok
    • Analytical Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.487-494
    • /
    • 2008
  • An experiment was performed for zone refined Re-filament and normal (nonzone refined) Re-filament to reduce the background effect on the measurement of low level uranium samples. From both filaments, the signals which seemed to come from a cluster of light alkali elements, $(^{39}K_6)^+$, $(^{39}K_5+^{41}K)^+$ and $PbO_2$ were identified as the isobaric effect of the uranium isotopes. The isobaric effect signal was completely disappeared by heating the filament about $2000^{\circ}C$ at < $10^{-7}$ torr of vacuum for more than 1.5 hour in zone refined Refilaments, while that from the normal Re-filaments was not disappeared completely and was still remained as 3 pg. of uranium as the impurities after the degassing treatment was performed for more than 5 hours at the same condition of zone refined filaments. A threshold condition eliminating impurities were proved to be at 5 A and 30 minutes of degassing time. The uranium content as an impurity in rhenium filament was checked with a filament degassing treatment using the U-233 spike by isotope dilution mass spectrometry. A 0.31 ng of U was detected in rhenium filament without degassing, while only 3 pg of U was detected with baking treatment at a current of 5.5 A for 1 hr. Using normal Re-filaments for the ultra trace of uranium sample analysis had something problem because uranium remains to be 3 pg on the filament even though degassed for long hours. If the 1 ng uranium were measured, 0.3% error occurred basically. It was also conformed that ionization filament current was recommended not to be increased over 5.5 A to reduce the background. Finally, the contents of uranium isotopes in uranium standard materials (KRISS standard material and NIST standard materials, U-005 and U-030) were measured and compared with certified values. The differences between them showed 0.04% for U-235, 2% for U-234 and 2% for U-236, respectively.