DOI QR코드

DOI QR Code

CNN Based Spectrum Sensing Technique for Cognitive Radio Communications

인지 무선 통신을 위한 합성곱 신경망 기반 스펙트럼 센싱 기법

  • Jung, Tae-Yun (Department of Mobile Convergence and Engineering, Hanbat National University) ;
  • Lee, Eui-Soo (Department of Mobile Convergence and Engineering, Hanbat National University) ;
  • Kim, Do-Kyoung (Communication Waveforms, LIG Nex1 Company) ;
  • Oh, Ji-Myung (Communication Waveforms, LIG Nex1 Company) ;
  • Noh, Woo-Young (Communication Waveforms, LIG Nex1 Company) ;
  • Jeong, Eui-Rim (Department of Information and Communication Engineering, Hanbat National University)
  • Received : 2019.11.18
  • Accepted : 2019.12.05
  • Published : 2020.02.29

Abstract

This paper proposes a new convolutional neural network (CNN) based spectrum sensing technique for cognitive radio communications. The proposed technique determines the existence of the primary user (PU) by using energy detection without any prior knowledge of the PU's signal. In the proposed method, the received signal is high-rate sampled to sense the entire spectrum bands of interest. After that, fast Fourier transform (FFT) of the signal converts the time domain signal to frequency domain spectrum and by stacking those consecutive spectrums, a 2 dimensional signal is made. The 2 dimensional signal is cut by the sensing channel bandwidth and inputted to the CNN. The CNN determines the existence of the primary user. Since there are only two states (existence or non-existence), binary classification CNN is used. The performance of the proposed method is examined through computer simulation and indoor experiment. According to the results, the proposed method outperforms the conventional threshold-based method by over 2 dB.

본 논문에서는 인지 무선 통신을 위한 새로운 합성곱 신경망 기반 스펙트럼 센싱 기법을 제안한다. 제안하는 기법은 주 사용자 신호에 대한 어떠한 사전 정보도 알지 못하는 상황에서 에너지 검출을 통해 주 사용자 신호 유무를 판단한다. 제안하는 기법은 센싱하고자 하는 전체 대역을 고려하여 수신신호를 고속으로 샘플링한다. 이후 신호의 FFT(fast Fourier transform)을 통해 주파수 스펙트럼으로 변환하고 연속적으로 이와 같은 스펙트럼을 쌓아서 2차원 신호를 만든다. 이렇게 만든 2차원 신호를 탐지하고자 하는 채널 대역폭 단위로 자르고 합성곱 신경망에 입력하여 채널이 사용 중인지 비어있는지 판단한다. 판단하고자 하는 분류의 종류가 두 가지이므로 이진 분류 합성곱 신경망을 사용한다. 제안하는 기법의 성능은 컴퓨터 모의실험과 실제 실내환경에서의 실험을 통해 검증하는데 이 결과에 따르면 제안하는 기법은 기존 문턱값 기반 기법보다 2 dB 이상 우수한 성능을 보인다.

Keywords

References

  1. S. Haykin, D. J. Thomson, and J. H. Reed, "Spectrum sensing for cognitive radio," in Proceedings of the IEEE, vol. 97, no. 5, pp. 849-877, May. 2009.
  2. F. Salahdine, H. E. Ghazi, N. Kaabouch, and W. F. Fihri, "Matched filter detection with dynamic threshold for cognitive radio networks," in Proceeding of IEEE International Conference on Wireless Network and Mobile Communication, pp. 1-6, Oct. 2015.
  3. M. Yang, Y. Li, X. Liu, and W. Tang, "Cyclostationary feature detection based spectrum sensing algorithm under complicated electromagnetic environment in cognitive radio networks," in China Communications, vol. 12, no. 9, pp. 35-44, Sep. 2015. https://doi.org/10.1109/CC.2015.7275257
  4. J. H. Baek, J. H. Lee, H. J. Oh, and S. H. Hwang, "Performance improvements of energy detector for spectrum sensing in cognitive radio environments: verification using time delay," The Institute of Electronics Engineers of Korea - Telecommunications, vol. 45, no. 1, pp. 72-77, Jan. 2008.
  5. M. M. Mabrook, and A. I. Hussein, "Major spectrum sensing techniques for cognitive radio networks: a survey," International Journal of Engineering and Innovative Technology, vol. 5, no. 3, pp. 24-37, Sep. 2015.
  6. W. Ejaz, G. A. Shah, N. U. Hasan, and H. S. Kim, "Energy and throughput efficient cooperative spectrum sensing in cognitive radio sensor networks," Transactions on Emerging Telecommunications Technologies, vol. 26, no. 7, pp. 1019-1030, Mar. 2015. https://doi.org/10.1002/ett.2803
  7. M. Gupta, G. Verma, and R. K. Dubey, "Cooperative spectrum sensing for cognitive radio based on adaptive threshold," in Proceeding of IEEE International Conference on Computational Intellgence and Communication Technology, pp. 444-448, Feb. 2016.
  8. N. Armi, B. A. W. Chaeriah, and M. Arshad, "Spectrum sensing performance in cognitive radio system," in Proceeding of IEEE International Conference on Information Technology, Computer, and Electrical Engineering, pp. 382-385, Oct. 2015.
  9. R. R. Jaglan, S. Sarowa, R. Mustafa, S. Agrawal, and N. Kumar, "Comparative study of single-user spectrum sensing techniques in cognitive radio networks," Procedia Computer Science, vol. 58, no.1, pp. 121-128, Aug. 2015. https://doi.org/10.1016/j.procs.2015.08.039