• Title/Summary/Keyword: thresher

Search Result 43, Processing Time 0.028 seconds

Development of Vegetable Soybeans Thresher (I) - Physical properties and threshing characteristics of vegetable soybeans - (풋콩 탈협기 개발을 위한 기초 연구 (I) - 풋콩의 물성 및 탈협 특성 -)

  • 김태한;임학규;오대건
    • Journal of Biosystems Engineering
    • /
    • v.27 no.2
    • /
    • pp.89-96
    • /
    • 2002
  • The trend of consumption of vegetable soybeans is increasing because they are recognized as the clean vegetable. The works requiring the most intensive labor are threshing and seperation ones, and they form about 80% of total labour for vegetable soybeans production. It is necessary to develop the vegetable soybeans-thresher for the sake of cost down of vegetable soybeans production. The purpose of this study is to acquire the basic informations to design of the vegetable soybeans-thresher. We make the experimental system which control the speed of threshing cylinder and the teeth gap and investigate the detachment forces. The result are as follows ; The ratio of un-threshed soybeans-pod to stem after threshing work is decreasing as the threshing cylinder speed increases: 0.0% and 2.8% at 55m/s and 18m/s of threshing cylinder speed respectively. Also the ratio of un-threshed soybeans-pod to stem is shown as 2.0% below in the condition of 64~160mm of teeth gap and over 28m/s of threshing cylinder speed. The damaged pod ratio of detached soybeans after threshing work is decreasing as the threshing cylinder speed increases: 4.8% and 1.3% at 55m/s and 18m/s of threshing cylinder speed respectively. The minimum damaged pod ratio of detached soybeans are shown as 1.0%, 1.5% and 1.9% at 18m/s, 28m/s and 37m/s of threshing cylinder speed respectively. The average detachment forces of pods are shown as 1.5kg$_{f}$ for 3 grains, 1.2kg$_{f}$ for 2 grains and 0.8kg$_{f}$ for 1 grain respectively. The maximum detachment force of pod is shown as 2.7kg$_{f}$ for 3 grains. grains.

Study on Separating Performance of Oscillating Sieve in Wet-Paddy Threshing (요동(搖動)체의 벼 생탈곡물(生脱糓物) 선별성능(選別性能)에 관(關)한 연구(硏究))

  • Kim, Sang Hun
    • Journal of Biosystems Engineering
    • /
    • v.7 no.1
    • /
    • pp.33-41
    • /
    • 1982
  • When wet-paddy is threshed by conventional auto-fed thresher, the threshed material under the concave is difficult to separate with pneumatic separation only. The development of thresher with an oscillating sieve in addition to the conventional pneumatic separation has been recommanded to improve the separation of grains from straw and chaff having high moisture content. This study was intended to evaluate the separating performance of an oscillating sieve and to obtain the effective operation conditions of the sieve separation. The sieve with oscillating in an elliptical motion was developed and installed in the experimental unit which can simulate the separating operation of the conventional auto-fed thresher. Results of the study are summarized as follows: 1. The flowing velocity of grains on oscillating sieve was increased as the sieve frequency increased but the feed rate did not significantly affect the flowing velocity of grains on sieve. 2. The effects of sieve frequency and the direction of sieve rotation on the separating performance by oscillating sieve show that increasing the frequency of sieve driving crank above the 460 rpm in the same direction of material flow (con-flow) improved the separating performance. 3. The height of grain guide plate and air velocity through the sieve to optimize the separating performance of oscillating sieve were experimentally determined to give about 10cm above the sieve and 7 m/s, respectively.

  • PDF

Feed Rate Control for the Head-Feed Thresher (수급식탈곡기(穗給式脱穀機)의 공급율(供給率) 제어(制御)(II) -제어시스템 설계 및 시뮬레이션-)

  • Choi, Y.S.;Chung, C.J.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.2
    • /
    • pp.110-122
    • /
    • 1990
  • This study was undertaken to develop the feed rate control system for the head feed thresher by making use of the microprocessor and to evaluate the response of the system to a various threshing conditions. The control unit was composed of one-board microcomputer. The speed of the wet-paddy feeding chain was controlled by dc moter with PI controller. It was used the adaptive control method to maintain the constant feed rate regardless of the fed rice varieties. The sliding type potentiometer was used as the feed rate sensor, which was attached on the sheaf-holding apparatus. The mathematical models of the system components were derived and computer simulation was developed for investigating the parameters affecting on control performance and for estimating the response of the system. A one-board microcomputer-based feed rate control system developed in this study was properly functioned and assessed as adequate for the feed rate control system of the head feed thresher. Based on the simulation for the bundle feed, it was anticipated that the lower setting value of the cylinder speed(RL) is to be set higher than the limiting operational speed. In addition, the higher setting value of the cylinder speed(RH) is to be set lower than the limiting cylinder speed for threshing. The computer simulation for the continuous spread feed showed that the lower the setting value of straw layer thickness(LL) was set, the shorter the correction time. However, if too low LL may be established, the feed rate could not reach to its desired rate.

  • PDF

Effects of Defect Factors of Combine Header on Cutting Speed of Combine Header, Feeding Depth of Straw, and Cylinder Speed of Thresher (콤바인 예취부의 고장요인이 예취날의 평균 속도, 반송 두께, 탈곡통의 회전 속도에 미치는 영향)

  • Kim, Y.J.;Choi, C.H.;Mun, J.H.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.5
    • /
    • pp.324-331
    • /
    • 2007
  • The purpose of this study is to analysis effects of defect factors of combine header for cutting speed of combine header, feeding depth of straw, and cylinder speed of thresher. Measurement system for defect factors was consists of sensors to monitor the combine operation and I/O interface to convert the signals. Cutting speed of combine header, feeding depth of straw, cylinder speed of thresher were measured and analyzed. The data were collected from three paddy field during rice harvesting. The tests were conducted at different grounding speeds, lug troubles, and cutter condition. The one way ANOVA and the multiple comparison tests were performed. The results showed that the measured data were useful to monitor the defect factors of combine during harvesting. The faults conditions of grounding speeds, lug troubles, and cutter conditions affected cutting speeds, feeding depths and cylinder speeds of the combine. The data seem to be useful to analysis the faults conditions of combine header.

Study on Cone Type Thresher (I) (원추형(圓錐型) 탈곡기(脱糓機)에 관(關)한 연구(硏究))

  • Lee, Seung Kyu
    • Journal of Biosystems Engineering
    • /
    • v.6 no.1
    • /
    • pp.48-59
    • /
    • 1981
  • The major limiting factor on the determination of combine capacity is the frequent occurence of clogging over the some parts of machine when the crop is wet in the case of Japanese self-feeding type combine. And in the case of American conventional combine having big separating parts, the great grain loss and damage occur when the machine is used for rice harvesting. This experiment was carried out to develop the new type threshing and separating equipment. Proto-type thresher which consist of a conical threshing drum and a conical separating sieve rotating around the threshing cone was constructed and tested. In the case of 800 rpm of threshing cone speed, average threshing loss was below 1 percent, separating loss was about 1 percent, grain damage was about 0.4 percent, and average total power required was about 2.6 PS. This design has some problems such as higher power required or wrapping problems under the conditions of feeding long damp straw. But, compared with the conventional combine or thresher, this machine certainly has some potentials for this approach to combine development. The crop feed rate must be increased through improvement of the feeding portion of the threshing cone. And it is required to investigate further about some parameters causing wrapping phenomena.

  • PDF

A Study on the Threshing Mechanism of Rasp-Bar Type Thresher -Dynamic Analysis of Threshing Process- (줄봉형 탈곡기의 탈곡장치에 관한 연구 -탈곡과정의 역학적 분석-)

  • Park, K.J.;Clark, S.J.;Dwyer, S.V.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.4
    • /
    • pp.371-381
    • /
    • 1993
  • Threshing operation is performed by impact, compression and friction forces inside the thresher. These values should be appropriate to the crop condition to enhance the threshing and separating efficiency and to decrease the grain damage. To analyze the threshing process inside the rasp-bar type thresher, impact, friction and compression forces were measured using transducers with strain gage circuits. To measure the impact forces and friction forces between the rasp-bar and crop, full bridge strain gage circuit was built on the rasp-bar holder. To measure the compression forces and circumferential friction forces between the concave and crop, two sets of full bridge strain gage circuits were built on the T-type concave transducer. Threshing work of wheat crop with 12% of moisture content was performed at 3 levels of compression ratio and with 3 replications. Each transducer could not measure the exact forces continuously because the transducer oscillates with the forces. However they could measure maximum forces and force distribution according to the time. Average friction coefficients between crop and concave was 0.61 not showing any significant difference according to the compression ratio. Average acceleration of the crop in the cylinder appeared from $70.6m/s^2$ to $140.8m/s^2$ according to the compression ratio. The velocity of the crop at the exit of the cylinder appeared from 10.7m/s to 15.0m/s according to the compression ratio.

  • PDF

Development of hiting sesamer thresher (타격식 참깨탈곡기 개발)

  • 박회만;정성근;홍성기;최희석;홍현유
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2003.07a
    • /
    • pp.309-316
    • /
    • 2003
  • Generally, sesame are dried on the field after being harvested in Korea. Since harvesting season is rainy autumn and sesame drying is mainly affected sun and natural wind, it is difficult to dry sesame in time. Moreover, sesame threshing by hand is very laborious work. Therefore, tractor mounted sesame thresher which threshes sesame bundles fed in upside down and conveyed along threshing bar was developed to mechanize sesame threshing and to reduce labor cost in this research. the thresher was equipped with a threshing bar which beats sesame bundles and a three layer sieve which screens sesame. The results are summarized as follows ; 1 The sesame thresher was consisted of a hitting-stick, a feeding chain conveyor, a threshing bar, conveyor belt, and the three-layer shaking sieve. 2. In threshing test, prototype thresher showed maximum threshing ratio 98.5%, 98.7% at 14, 17 cpm beating rate respectively. 3. In screening test, prototype sieve showed maximum threshing ratio 97.2% at 12$^{\circ}$ of inclined angle and 220 cpm of sieve vibrating rate. 4. Prototype showed 98.7% of threshing ratio, 1.3% of threshing loss, 97.0% of screening ratio, 0.7% of screening loss on the rest condition of 15 sesame bundles/min of feeding rate, 14 cpm of beating rate, 220 cpm of sieve vibrating rate. 5. The working performance of prototype was 0.5hr/10a. It was 9.6 times more efficient than manual work. And, operation cost of prototype was saved by 45.9% compared to manual work.

  • PDF