• Title/Summary/Keyword: three-point bending beam

Search Result 97, Processing Time 0.024 seconds

Design of A$1_2$$O_3$ substrate for the increasing fracture toughness (A$1_2$$O_3$기판 재료의 $K_{IC}$ 증가를 위한 재료 설계)

  • ;S.Tariolle;P.Goeuriot
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.11a
    • /
    • pp.177-179
    • /
    • 2002
  • A1$_2$ $O_3$기판재료의 $K_{IC}$ 증가를 위한 재료설계를 시도하였다. 먼저 A1$_2$ $O_3$기판을 구성하는 A1$_2$ $O_3$다층구조물에 적절한 다공성 중간층을 삽입하는 샌드위치 구조물을 제조하였다. 제조된 A1$_2$ $O_3$구조물의 미세구조를 관찰하였고, Vickers 경도와 three-point bending test를 통해서 단일조성 구조물과 샌드위치 구조물의 경도와 인성 측정치를 비교하였다. 다공층을 삽입한 A1$_2$ $O_3$샌드위치 구조물의 Single-Edge Notched Beam이 단일 조성의 구조물에 비해 파괴강도와 인성이 향상되는 결과를 얻었다.

  • PDF

Beam-Type Bend Specimen for Interlaminar Fracture Toughness of Laminated Composite under Mixed-Mode Defmrmations (보 형태의 굽힘시편을 이용한 적층복합재료의 혼합모우드 층간파괴인성 평가)

  • 윤성호;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.911-920
    • /
    • 1989
  • It this study, beam-type bend specimen is used to evaluate the interlaminar fracture toughness of laminated composite under mixed-mode deformations. The specimen is loaded under three-point bending and hence produced mixed-mode deformations in the vicinity of the crack tip according to the variation of the thickness ratio on delamination plane. Total energy release rate is obtained by elementary beam theory considering the effect of shear deformation. The partitioning of total value into mode-I and mode-II components is also performed. The mixed-mode interlaminar fracture toughness is evaluated by experiments on specimens with several thickness ratios of delamination plane. As the part of delamination plane is thicker, the effect of shear deformation on total energy release rate is increased. Beam-type bend specimen men may be applied to obtain informations on the mixed-mode interlaminar fracture behavior of laminated composites.

Surface Characteristics of Type II Anodized Ti-6Al-4V Alloy for Biomedical Applications

  • Lee, Su-Won;Jeong, Tae-Gon;Yang, Jae-Ung;Jeong, Jae-Yeong;Park, Gwang-Min;Jeong, Yong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.77-77
    • /
    • 2017
  • Titanium and its alloys offer attractive properties in a variety of applications. These are widely used for the field of biomedical implants because of its good biocompatibility and high corrosion resistance. Titanium anodizing is often used in the metal finishing of products, especially those can be used in the medical devices with dense oxide surface. Based on SAE/AMS (Society of Automotive Engineers/Aerospace Material Specification) 2488D, it has the specification for industrial titanium anodizing that have three different types of titanium anodization as following: Type I is used as a coating for elevated temperature forming; Type II is used as an anti-galling coating without additional lubrication or as a pre-treatment for improving adherence of film lubricants; Type III is used as a treatment to produce a spectrum of surface colours on titanium. In this study, we have focused on Type II anodization for the medical (dental and orthopedic) application, the anodized surface was modified with gray color under alkaline electrolyte. The surface characteristics were analyzed with Focused Ion Beam (FIB), Scanning Electron Microscopy (SEM), surface roughness, Vickers hardness, three point bending test, biocompatibility, and corrosion (potentiodynamic) test. The Ti-6Al-4V alloy was used for specimen, the anodizing procedure was conducted in alkaline solution (NaOH based, pH>13). Applied voltage was range between 20 V to 40 V until the ampere to be zero. As results, the surface characteristics of anodic oxide layer were analyzed with SEM, the dissecting layer was fabricated with FIB method prior to analyze surface. The surface roughness was measured by arithmetic mean deviation of the roughness profile (Ra). The Vickers hardness was obtained with Vickers hardness tester, indentation was repeated for 5 times on each sample, and the three point bending property was verified by yield load values. In order to determine the corrosion resistance for the corrosion rate, the potentiodynamic test was performed for each specimen. The biological safety assessment was analyzed by cytotoxic and pyrogen test. Through FIB feature of anodic surfaces, the thickness of oxide layer was 1.1 um. The surface roughness, Vickers hardness, bending yield, and corrosion resistance of the anodized specimen were shown higher value than those of non-treated specimen. Also we could verify that there was no significant issues from cytotoxicity and pyrogen test.

  • PDF

Fracture Toughness and Crack Growth Resistance of the Fine Grain Isotropic Graphite

  • Kim, Dae-Jong;Oh, Seung-Jin;Jang, Chang-Heui;Kim, In-Sup;Chi, Se-Hwan
    • Carbon letters
    • /
    • v.7 no.1
    • /
    • pp.19-26
    • /
    • 2006
  • Three point bending tests of single edge notched beam (SENB) specimens were carried out to evaluate the fracture behavior of the fine-grain isotropic nuclear grade graphite, IG-11. To measure the crack initiation point and the subsequent crack growth, the direct current potential drop (DCPD) method and a traveling microscope were used. The effects of test variables like initial crack length, specimen thickness, notch type and loading rate on the measured fracture toughness, $K_Q$, were investigated. Based on the test results, the ranges of the test variables to measure the reliable fracture toughness value were proposed. During the crack growth, the rising R-curve behavior was observed in IG-11 graphite when the superficial crack length measured on the specimen surface was used. The increase of crack growth resistance was discussed in terms of crack bridging, crack meandering, crack branching, microcracking and crack deflection, which increase the surface energy and friction force.

  • PDF

Diagonal Tension Failure Model for RC Slender Beams without Shear Reinforcement Based on Kinematical Conditions (II) - Verification

  • You, Young-Min;Kang, Won-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.6
    • /
    • pp.16-25
    • /
    • 2007
  • In a companion paper, a rational mechanical model to predict the entire behavior of point-loaded RC slender beams (a/d > 2.5) without shear reinforcement was developed. This paper presents the test results of 9 slender shear beams and compares them with analytical results performed by the proposed model. They are grouped by two parameters, which are shear span ratio and concrete strength. Three kinds of concrete strength the 26.5, 39.2, and 58.8 MPa were included as a major experimental parameter together with different shear span ratios ranging from 3 to 6 depending on the test series. Tests were set up as a traditional 3 point bending test. Various measurements were taken to monitor abrupt shear failure. Test results were not only compared with analytical results from the proposed model, but also other formulas, to consider the various aspects of shear failure such as kinematical conditions or shear capacity. Finally, a review of the proposed model is presented with respect to the shear transfer mechanisms and the effect of test parameters. Results show that several assumptions and proposals adopted in the proposed model are rational and reasonable.

Load Fidelity Improvement of Piecewise Integrated Composite Beam by Irregular Arrangement of Reference Points (참조점의 불규칙적 배치를 통한 PIC보의 하중 충실도 향상에 관한 연구)

  • Ham, Seok Woo;Cho, Jae Ung;Cheon, Seong S.
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.216-221
    • /
    • 2019
  • Piecewise integrated composite (PIC) beam has different stacking sequences for several regions with respect to their superior load-resisting capabilities. On the interest of current research is to improve bending characteristics of PIC beam, with assigning specific stacking sequence to a specific region with the help of machine learning techniques. 240 elements of from the FE model were chosen to be reference points. Preliminary FE analysis revealed triaxialities at those regularly distributed reference points to obtain learning data creation of machine learning. Triaxiality values catagorise the type of loading i.e. tension, compression or shear. Machine learning model was formulated by learning data as well as hyperparameters and proper load fidelity was suggested by tuned values of hyperparameters, however, comparatively higher nonlinearity intensive region, such as side face of the beam showed poor load fidelity. Therefore, irregular distribution of reference points, i.e., dense reference points were distributed in the severe changes of loading, on the contrary, coarse distribution for rare changes of loading, was prepared for machine learning model. FE model with irregularly distributed reference points showed better load fidelity compared to the results from the model with regular distribution of reference points.

Effect of basalt fibers on fracture energy and mechanical properties of HSC

  • Arslan, Mehmet E.
    • Computers and Concrete
    • /
    • v.17 no.4
    • /
    • pp.553-566
    • /
    • 2016
  • Fracture energy is one of the key parameters reveal cracking resistance and fracture toughness of concrete. The main purpose of this study is to determine fracture behavior, mechanical properties and microstructural analysis of high strength basalt fiber reinforced concrete (HSFRC). For this purpose, three-point bending tests were performed on notched beams produced using HSFRCs with 12 mm and 24mm fiber length and 1, 2 and $3kg/m^3$ fiber content in order to determine the value of fracture energy. Fracture energies of the notched beam specimens were calculated by analyzing load versus crack mouth opining displacement curves by the help of RILEM proposal. The results show that the effects of basalt fiber content and fiber length on fracture energy are very significant. The splitting tensile and flexural strength of HSFRC increased with increasing fiber content whereas a slight drop in flexural strength was observed for the mixture with 24mm fiber length and $3kg/m^3$ fiber content. On the other hand, there was no significant effect of fiber addition on the compressive strength and modulus of elasticity of the mixtures. In addition, microstructural analysis of the three components; cement paste, aggregate and basalt fiber were performed based on the Scanning Electron Microscopy and Energy-Dispersive X-ray Spectroscopy examinations.

Investigation of Flexural Toughness Development of Steel Fiber Reinforced Concrete at Early Ages (강섬유 보강 콘크리트의 조기 재령에서의 휨 인성 발현에 관한 연구)

  • Lee, Chang-Joon;Shin, Sung-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.103-110
    • /
    • 2009
  • Since the mechanical properties of cement-based materials are time-dependent due to the prolonged cement hydration process, those of fiber reinforced concrete(FRC) may also be time-dependent. Toughness is one of important properties of FRC. Therefore, it should be investigated toughness development of FRCs with curing ages to fully understand the time-dependent characteristics of FRCs. To this end, the effect of curing ages on flexural toughness development of steel fiber reinforced concrete is studied. Three point bending test with notched beam specimen was adapted for this study. Hooked-end steel fiber(DRAMIX 40/30) was used as a fiber ingredient to investigate w/c ratio and fiber volume fraction effect on toughness development during curing. Three different water-cement ratios(0.44, 0.5 and 0.6) and fiber volume fractions(0%, 0.5% and 1%) were used as influence factors. Each mixture specimens were tested at five different ages, 0.5, 1, 3, 7 and 28 days. The study shows that flexure toughness development with age is quite different than other concrete material properties such as compressive strength. The study also shows that the toughness development trend correlates more closely to water/cement ratio than to fiber volume fraction.

Recommendation for the modelling of 3D non-linear analysis of RC beam tests

  • Sucharda, Oldrich;Konecny, Petr
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.11-20
    • /
    • 2018
  • The possibilities of non-linear analysis of reinforced-concrete structures are under development. In particular, current research areas include structural analysis with the application of advanced computational and material models. The submitted article aims to evaluate the possibilities of the determination of material properties, involving the tensile strength of concrete, fracture energy and the modulus of elasticity. To evaluate the recommendations for concrete, volume computational models are employed on a comprehensive series of tests. The article particularly deals with the issue of the specific properties of fracture-plastic material models. This information is often unavailable. The determination of material properties is based on the recommendations of Model Code 1990, Model Code 2010 and specialized literature. For numerical modelling, the experiments with the so called "classic" concrete beams executed by Bresler and Scordelis were selected. It is also based on the series of experiments executed by Vecchio. The experiments involve a large number of reinforcement, cross-section and span variants, which subsequently enabled a wider verification and discussion of the usability of the non-linear analysis and constitutive concrete model selected.

An Experimental Study on the Fatigue Behavior of Steel-Concrete Composite Bridge Deck (강-콘크리트 합성 교량 바닥판의 피로거동에 대한 실험적 연구)

  • 심정욱;김상효;정연주;박휘립
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.499-504
    • /
    • 2003
  • Future bridge decks must have high load-resistance capacity as well as fatigue strength to withstand the increase in traffic loading and the increase in span length between girders due to the decrease in the number of main girders. Steel-concrete composite bridge decks may be proper deck types to satisfy such requirements. To promote the application of composite bridge decks, a rational process to predict and evaluate the fatigue behavior of steel concrete composite bridge deck is required. Various types of steel-concrete composite bridge decks have been developed in many countries. In this study, combining advantages of the existing composite deck types, a new type of composite bridge deck is proposed. An experimental study is performed to examine the fatigue behavior of the proposed composite bridge deck. This composite bridge deck consists of corrugated steel sheet, welded T-beams, stud-type shear connectors and reinforced concrete filler. The fatigue tests are conducted under four-point bending test with three different stress ranges in constant amplitude. The fatigue category of the fillet welding between corrugated steel sheet and the T-beam is evaluated based on the S-N data obtained from the experiment.

  • PDF