• Title/Summary/Keyword: thiol-specific

Search Result 70, Processing Time 0.02 seconds

Development of Next Generation Biochip Using Indicator-free DNA (비수식화 DNA를 이용한 차세대형 바이오칩의 개발)

  • Choi, Yong-Sung;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.71-73
    • /
    • 2006
  • This research aims to develop a multiple channel electrochemical DNA chip using micro- fabrication technology. At first, we fabricated a high integrated type DNA chip array by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the gold electrodes. Then target DNAs were hybridized by an electrical force. Redox peak of cyclic-voltammogram showed a difference between target DNA and mismatched DNA in the anodic peak current. Therefore. it is able to detect a various genes electrochemically after immobilization of a various probe DNA and hybridization of label-free DNA on the electrodes simultaneously. It suggested that this DNA chip could recognize the sequence specific genes.

  • PDF

Mechanism of Redox- and Metal-dependent Modulation of RsrA, an Anti-sigma Factor for Redox-dependent Regulation of Thioredoxin Operons in Streptomyces coelicolor

  • Bae, Jae-Bum;Park, Ju-Hong;Roe, Jung-Hye
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2001.06a
    • /
    • pp.63-63
    • /
    • 2001
  • SigR ($\sigma$$\^$R/) is a sigma factor responsible for inducing the thioredoxin system in response to oxidative stress in Streptomyces coelicolor. RsrA specifically binds to $\sigma$$\^$R/ and inhibits $\sigma$$\^$R/-directed transcription under reducing conditions. Exposure to H$_2$O$_2$ or thiol-specific oxidant diamide dissociates $\sigma$$\^$R/-RsrA complex. RsrA contains 7 cysteine residues in 105 total amino acid residues.(omitted)

  • PDF

Development of New Biochip and Genome Detection Using an Non-labeling Target DNA (차세대형 바이오칩의 개발 및 비수식화 표적 DNA를 이용한 유전자 검출)

  • Choi, Yong-Sung;Park, Dae-Hee;Kwon, Young-Soo;Kawai, Tomoji
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.51-53
    • /
    • 2002
  • This research aims to develop a multiple channel electrochemical DNA chip using micro-fabrication technology. At first, we fabricated a high integrated type DNA chip array by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the sold electrodes. Then target DNAs were hybridized by an electrical force. Redox peak of cyclic-voltammogram showed a difference between target DNA and mismatched DNA in the anodic peak current. Therefore, it is able to detect a various genes electrochemically after immobilization of a various probe DNA and hybridization of label-free DNA on the electrodes simultaneously. It suggested that this DNA chip could recognize the sequence specific genes.

  • PDF

Genome Detection Using an DNA Chip Array and Non-labeling DNA (비수식화 바이오칩 및 유전자 검출)

  • Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.402-403
    • /
    • 2006
  • This research aims to develop the multiple channel electrochemical DNA chip using microfabrication technology. At first, we fabricated a high integration type DNA chip array by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the gold electrodes. Then target DNAs were hybridized and reacted. Cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. Therefore, it is able to detect a plural genes electrochemically after immobilization of a plural probe DNA and hybridization of non-labeling target DNA on the electrodes simultaneously. It suggested that this DNA chip could recognize the sequence specific genes.

  • PDF

A Portable Surface Plasmon Resonance Biosensor for Rapid Detection of Salmonella typhimurium

  • Nguyen, Hoang Hiep;Yi, So Yeon;Woubit, Abdela;Kim, Moonil
    • Applied Science and Convergence Technology
    • /
    • v.25 no.3
    • /
    • pp.61-65
    • /
    • 2016
  • Here, the rapid detection of Salmonella typhimurium by a portable surface plasmon resonance (SPR) biosensor in which the beam from a diode laser is modulated by a rotating mirror is reported. Using this system, immunoassay based on lipopolysaccharides (LPS)-specific monoclonal anti-Salmonella antibody was performed. For the purpose of orientation-controlled immobilization of antibodies on the SPR chip surface, the cysteine-mediated immobilization method, which is based on interaction between a gold surface and a thiol group (-SH) of cysteine, was adopted. As a result, using the portable SPR-based immunoassay, we detected S. typhimurium in the range from 10^7 CFU/mL to 10^9 CFU/mL within 1 hour. The results indicate that the portable SPR system could be potentially applied for general laboratory detection as well as on-site monitoring of foodborne, clinical, and environmental agents of interest.

Peroxiredoxins and the Regulation of Cell Death

  • Hampton, Mark B.;O'Connor, Karina M.
    • Molecules and Cells
    • /
    • v.39 no.1
    • /
    • pp.72-76
    • /
    • 2016
  • Cell death pathways such as apoptosis can be activated in response to oxidative stress, enabling the disposal of damaged cells. In contrast, controlled intracellular redox events are proposed to be a significant event during apoptosis signaling, regardless of the initiating stimulus. In this scenario oxidants act as second messengers, mediating the post-translational modification of specific regulatory proteins. The exact mechanism of this signaling is unclear, but increased understanding offers the potential to promote or inhibit apoptosis through modulating the redox environment of cells. Peroxiredoxins are thiol peroxidases that remove hydroperoxides, and are also emerging as important players in cellular redox signaling. This review discusses the potential role of peroxiredoxins in the regulation of apoptosis, and also their ability to act as biomarkers of redox changes during the initiation and progression of cell death.

Distribution and Features of the Six Classes of Peroxiredoxins

  • Poole, Leslie B.;Nelson, Kimberly J.
    • Molecules and Cells
    • /
    • v.39 no.1
    • /
    • pp.53-59
    • /
    • 2016
  • Peroxiredoxins are cysteine-dependent peroxide reductases that group into 6 different, structurally discernable classes. In 2011, our research team reported the application of a bioinformatic approach called active site profiling to extract active site-proximal sequence segments from the 29 distinct, structurally-characterized peroxiredoxins available at the time. These extracted sequences were then used to create unique profiles for the six groups which were subsequently used to search GenBank(nr), allowing identification of ~3500 peroxiredoxin sequences and their respective subgroups. Summarized in this minireview are the features and phylogenetic distributions of each of these peroxiredoxin subgroups; an example is also provided illustrating the use of the web accessible, searchable database known as PREX to identify subfamily-specific peroxiredoxin sequences for the organism Vitis vinifera (grape).

Overview on Peroxiredoxin

  • Rhee, Sue Goo
    • Molecules and Cells
    • /
    • v.39 no.1
    • /
    • pp.1-5
    • /
    • 2016
  • Peroxiredoxins (Prxs) are a very large and highly conserved family of peroxidases that reduce peroxides, with a conserved cysteine residue, designated the "peroxidatic" Cys ($C_P$) serving as the site of oxidation by peroxides (Hall et al., 2011; Rhee et al., 2012). Peroxides oxidize the $C_P$-SH to cysteine sulfenic acid ($C_P$-SOH), which then reacts with another cysteine residue, named the "resolving" Cys ($C_R$) to form a disulfide that is subsequently reduced by an appropriate electron donor to complete a catalytic cycle. This overview summarizes the status of studies on Prxs and relates the following 10 minireviews.

Expression and Characterization of Thiol-Specific Antioxidant Protein, DirA of Corynebacterium diphtheriae (코리네박테리움 디프테리아 티올 특이성 항산화단백 DirA의 발현 및 특성)

  • Myung-Jai Choi;Kanghwa Kim;Won-Ki Choi
    • Biomedical Science Letters
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 1998
  • A Corynebacterium diphtheriae iron-repressible gene dirA, that was homologous to TSA of Saccharomyces cerevisiae and AhpC subunit of Salmonella typhimurium alkyl hydroperoxide reductase, was amplified with PCR and expressed in E. coli. The DirA purified from the transformed E. coli crude extracts prevented the inactivation of enzyme caused by metal-catalyzed oxidation (MCO) system containing thiols but not by ascorbate/Fe$^{3+}$/$O_2$ MCO system. The DirA concentration, which inhibited the inactivation of glutamine synthetase by 50% (IC$_{50}$) against MCO system, was 0.12 mg/ml. The multimeric forms of DirA were converted to the monomeric form in SDS-PAGE under the thioredoxin system comprised of NADPH, Saccharomyces cerevisiae thioredoxin reductase, and thioredoxin. Also, DirA showed thioredoxin dependent peroxidase activity. All of these results were consistent with the characteristics of a thiol specific antioxidant (TSA) protein having two conserved cysteine residues.

  • PDF

Genome Detection Using an Integrated type DNA Chip Microelectrode-array and Non-labeling Target DNA (집적형 DNA칩 미소 전극 어레이 및 비수식화 표적 DNA를 이용한 유전자 검출)

  • Choi, Yong-Sung;Lee, Hea-Yeon;Tanaka, Hiroyuki;Tanaka, Hidekafu;Kwon, Young-Soo;Kawai, Tomoii
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.274-276
    • /
    • 2001
  • This research aims to develop the multiple channel electrochemical DNA chip using microfabrication technology. At first, we fabricated a high integration type DNA chip array by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the sold electrodes. Then target DNAs were hybridized and reacted. Cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. Therefore, it is able to detect a plural genes electrochemically after immobilization of a plural probe DNA and hybridization of non-labeling target DNA on the electrodes simultaneously. It suggested that this DNA chip could recognize the sequence specific genes.

  • PDF